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Tourette syndrome (TS) and obsessive-compulsive disorder (OCD) are 

neuropsychiatric disorders with onset in childhood affecting 0.6% and 2.3% of people, 

respectively. TS and OCD are also highly comorbid with 50-60% of TS patients 

endorsing OCD, and 10% of OCD patients endorsing TS. Both TS and OCD are highly 

heritable, with heritability estimates ranging 30% to 60% in family and twin studies. 

Despite substantial heritability estimates, little is known about underlying genetic 

mechanisms of OCD and related disorders (OCRD).  

In this dissertation, I explore OCRDs from both phenomic and genomic aspects. I 

use rich phenotypes from ABCD Study to investigate OCRD comorbidity and 

relationships with symptom-level data from the child behavioral checklist (CBCL). I also 

leverage genome-wide association to explore genetic architecture of OCD and related 

phenotypes, including polygenic risk score (PRS) analysis with tic disorders within 

ABCD Study and 12 disorders from the Psychiatric Genomics Consortium. I additionally 

explore copy-number variation (CNV) among neurodevelopmental disorders, specifically 

focusing on neurodevelopmental disorders including TS and autism spectrum disorder 

(ASD). 
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Phenomic analysis of psychopathology in ABCD Study has shown hyperinflated 

rates of psychiatric disorders in the ABCD Study, likely due to self-endorsement bias. 

To circumvent that, I define a narrow diagnosis construct that utilizes longitudinal data 

to refine psychiatric diagnoses. Narrow OCD (nOCD) better reflected childhood OCD 

prevalence rates and comorbidity patters, and a stronger relationship with symptom-

level data from CBCL. Genomic assessment of nOCD has also shown stronger PRS 

relationship with OCD symptoms compared to broad OCD. Similar effects were also 

observed in PRS analysis with 12 PGC disorders. CNV analysis of TS has resulted in 

successful replication of TS-risk contribution by NRXN1 deletions and CNTN6 

duplications, as well as identification of 39 additional genes that could potentially 

contribute to TS pathology. However, genome-wide burdens of CNV numbers or sizes 

were not replicated. 

Deconvoluting genetic and phenomic relationships and underpinnings of OCRDs 

is a complicated task confounded primarily by low sample sizes and suboptimal 

methodologies. Thus, increased recruitment efforts and improvements to statistical and 

computational methodologies to analyze these data will likely be the main drivers of 

discoveries in the OCRD genomics space. 
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CHAPTER 1 
INTRODUCTION 

Statistical Genomics 

Twenty-first century advances in deoxyribonucleic acid (DNA) genotyping and 

sequencing, specifically with the development of high-density microarrays and next 

generation sequencing, have resulted in a large amount of high-dimensional data. This 

circumstance has enabled scientists to explore complex genomic architectures of non-

Mendelian disorders. However, our ability to generate high-dimensional genomic data is 

rapidly outpacing our ability to analyze and make sense of them. Some estimates place 

the cumulative number of human DNA sequences (genome and exome) in 2025 at 

about 500-1000 million (Stephens et al., 2015). Presently, about 1 million whole 

genomes were sequenced, and the Genome Aggregation Database (gnomAD) has 

collected 91,864 of them (Karczewski et al., 2020). For this reason, there is a high need 

for development and application of advanced statistical methodologies and utilization of 

complex computational workflows which can handle such large datasets. 

Statistical genomics is an interdisciplinary area of science broadly defined by its 

focus on applications of statistical and computational methodologies on large genomic 

datasets. In most applications, generalizations of existing statistical methods coupled 

with modern computational technology is sufficient to explore this data, however the 

necessity of innovative approaches is ever-increasing. 

In this dissertation, I discuss several well-established methods within this field, as 

well as novel modifications thereof, to analyze high-dimensional, high-throughput data 

on several neurodevelopmental disorders. These methods can be broadly classified as 

polymorphism analyses and structural variant analyses. Furthermore, in this 
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dissertation, all data were generated by microarray genotyping, a highly affordable 

technique capable of assessing known markers across the human genome.  

Microarray Genotyping 

Microarray genotyping has its roots in mid-19th century, as a hypothesized 

application of Southern blotting on large numbers of probes of interest, however, the 

first such system was published in the 1990s, to analyze differential expression of 45 

genes in Arabidopsis thaliana (Schena et al., 1995). Since then, millions of people have 

had their genome genotyped on one of such arrays. Various companies have 

developed human microarrays, which have been commercialized to deliver ancestry, 

health, and other trait data to their consumers. For example, 23andMe alone has 

genotyped over 12 million individuals world-wide, revolutionizing direct-to-consumer 

genetic testing (23andMe, n.d.). Due to low price, well-defined protocols, and ability to 

handle large numbers of samples quickly and in a reproducible manner, microarray 

genotyping has been a research tool of choice for almost three decades. The resolution 

of microarrays has also changed substantially, from 45 probes on the Schena array in 

1995, to Illumina’s Infinium Omni5-4 microarray which has more than 4.3 million 

genome-wide probes and can genotype 4 samples simultaneously (Illlumina, n.d.).  

Microarray technology works on the principle of nucleic acid hybridization: an 

array is prepared with pre-determined immobilized nucleic acid sequences bound to 

quenched fluorophores (targets), followed by hybridization of one or more labeled 

samples, and detection of released fluorophores with microscopic cameras (Amersham 

Biosciences, 2002). The source of target sequences can be a cDNA library (for RNA 

detection), amplified regions of genomic DNA, and in silico synthesized oligonucleotides 

from gene databases. Although initially developed to measure differential expression of 
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RNA, microarrays have soon found applications in common variant (polymorphism) and 

structural variant applications (Iafrate et al., 2004). Polymorphism analysis leverages 

microarray data to call single nucleotide polymorphisms (SNPs) for the purposes of 

genome-wide association (GWA) analyses, whereas structural variant analysis 

leverages microarray data to estimate copy-number variation (CNV) across the 

genome. 

Polymorphism Analysis 

SNPs are the simplest yet most common of all polymorphic variation in the 

human genome and are characterized as loci that usually have only two alleles, 

corresponding to two different nucleotides at that specific genomic locus (Nussbaum et 

al., 2016). Genome-wide association study (GWAS) leverages genotypes at hundreds 

of thousands of loci for hundreds or thousands of individuals to identify genetic 

correlations with the trait of interest. This approach has been found to be particularly 

useful for polygenic and multifactorial traits, where the transmission of numerous 

genetic variants in complex inheritance patterns underlies the phenotype (NHGRI, 

2020). Additionally, many SNPs that are found to be associated with a trait might not be 

directly responsible for the phenotypic presentation, their proximity to causal genetic 

variants results in linkage-mediated association with the trait. Thus, GWAS approaches 

can be used to find either causative genetic variants or help localize regions of the 

genome harboring such variants for the traits of interest. 

Statistically, GWAS is a method encompassing SNP-wise independent tests of 

association usually involving Chi-square, Fisher’s exact, or logistic regression tests 

where the trait is categorical (e.g., presence or absence of a disorder) and linear 

regression and its derivatives (such as Poisson, negative binomial, etc.) where the trait 
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is quantitative (e.g., systolic blood pressure). Due to a large number of probes, and 

consequently a large number of tests, in GWAS, multiple-correction testing is necessary 

to curb the high number of spurious false positive associations. Assuming 𝛼 represents 

𝛼 level or significance threshold, and 𝑘 represents the number of SNPs (i.e., number of 

independent tests), then the probability of finding one positive SNP association can be 

expressed as: 

𝑃𝑆𝑁𝑃 = 1 − (1 − 𝛼)
𝑘 , 

(1-1) 

where the probability of finding a positive association PSNP is asymptotic to 1 (virtually 

guaranteed) for a typical number of SNPs examined in the GWAS analyses (Streiner & 

Norman, 2011). In essence, at α = 0.05 threshold, and k = 250,000 SNPs tested, the 

probability of finding at least one positive SNP association PSNP = 1, even in the 

absence of a true meaningful association between that SNP and the trait. To address 

this issue, a strict cut-off of α = 5 × 10-8 was introduced to account for the linkage and 

multiple tests (Risch & Merikangas, 1996), it was derived as a Bonferroni correction for 

1,000,000 SNPs at nominal α = 0.05. At this α, the probability of one positive 

association for k = 250,000 SNPs tested PSNP = 0.0124. Although this approach has 

been used for several decades now to correct for multiple testing in GWA analyses, 

recent studies point at the possibility of overcorrection and excessive stringency (Chen 

et al., 2021). 

To further increase the power of GWAS analyses, genetic imputation of the 

phased genotypes was introduced to allow allele estimation of millions of loci using the 

well genotyped and sequenced references (Li et al., 2009). Genetic phasing is a 

statistical process by which haplotype blocks are estimated on the genotyped data. 
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Unlike sequencing, in genotyping data it is not immediately apparent which allele on 

each independent locus is physically linked to which allele on the next independent 

locus. To get around that, clustering-based algorithms in conjunction with well-

sequenced reference data are used to statistically estimate which SNPs are inherited 

together (Roach et al., 2011). Phased genotypes can further be used in conjunction with 

hidden Markov models (HMM) to estimate the values for missing genotypes or even 

non-genotyped loci, which is known as genetic imputation (Howie, Donnelly & Marchini, 

2009). 

Such drastic increase in testable SNPs expands the ability of GWAS to probe 

genetic associations at a much higher resolution and allow fine mapping of associated 

loci. However, it is prudent to mention that the quality of genotype imputation is directly 

related to the quality of reference panels used and the need for more comprehensive 

reference panels (Shi et al., 2019), particularly among underrepresented ancestries 

(admixed and Native Americans, Africans, and Asians). It is important to mention that 

presently, imputations are used to form datasets of about 5,000,000 loci to be used in 

downstream GWASes. Based on the Equation 1-1, the probability of observing at least 

one positive hit at cutoff α = 5 × 10-8 is PSNP = 0.2212. For this reason, a closer 

examination of associating loci with respect to local recombination rates is usually 

conducted to determine the likelihood of a real association. Furthermore, due to linkage, 

it is expected that neighboring loci will also stand out in their strength of association - 

hence the reason why towering number of SNPs is usually preferred to a result of a sole 

singular association on the Manhattan plot. 
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It has been 15 years since the first high-resolution high-throughput GWAS was 

published examining 7 common disorders (~2,000 cases for each) and 3,000 shared 

controls totaling 17,000 samples on a 500,000 SNP Affymetrix GeneChip microarray 

(WTCCC, 2007). Since then, numerous aggregation databases have been established 

to track reported GWAS results. One such database, the GWAS Catalog, has 

documented results from 5,690 publications and 372,752 associations as of April 7th, 

2022 (Buniello et al., 2019). Based on thousands of GWAS publication for variety of 

traits, we have learned that complex traits are highly polygenic, pleiotropy is pervasive, 

methodological improvements drive new discoveries, common variants tag a substantial 

portion of additive genetic variance, and GWAS discoveries enable functional and 

therapeutic research (Visscher et al., 2017). Of course, improvement to GWAS 

methodology have also been introduced over this period, including improvements to 

quality control (QC) procedures, microarray genotyping protocols, diversification of the 

samples as well as aggregation of the large number of samples in GWAS studies, 

improved statistical testing for association, improved computational pipelines for 

phasing and imputation, etc. Sample sizes have increased exponentially since the early 

2010s, especially given the emergence of large national and international collections, as 

well as commercial collections, such as UK Biobank with 500,000 participants, BioBank 

Japan with 260,000 participants, China Kadoorie Biobank with 510,000 participants, 

H3Africa with 100,000 participants, BioMe with 50,000 participants, TOPMed with 

145,000 participants, Million Veteran Programme with 840,000 participants, All of Us 

with 132,000 individuals, and 23andme with several million participants (Uffelmann et 

al., 2021). Another contributing factor to increased sample sizes and power has been 
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collaborative aggregations of samples or GWAS summary statistics into large meta-

analyses facilitated by consortia such as the Psychiatric Genomics Consortium (PGC). 

Concomitantly to GWAS methodology development, numerous secondary-level 

analyses on genotyping data have been described that allow exploration of genetic 

underpinnings of complex hereditary disorders. The first obvious approach would be to 

estimate heritability for a given trait using actual genetic data instead of pedigrees – 

specifically referred to as SNP heritability (and annotated as hSNP
2). SNP heritability has 

been traditionally defined as a proportion in phenotypic variance explained by 

genotyped SNPs (Yang et al., 2017). However, further evaluations of SNP heritability 

methods have shown that accurate estimations of hSNP
2 requires accounting for minor 

allele frequency (MAF) and LD, as well as large sample sizes (Evans et al., 2018; 

Visscher et al., 2014). Extension to SNP heritability estimation, by considering 

aggregating nonlinear effects and interactions, LD score regression has been 

developed as tool that has the added benefit of potentially distinguishing between 

polygenic effects and confounding factors such as population structure (Bulik-Sullivan, 

Loh, et al., 2015). When it comes to analyzing relationships between multiple complex 

traits, genetic correlations have emerged as methods of choice, initial forms thereof 

essentially being an extrapolation of LD score regression to cross-trait analysis (Bulik-

Sullivan, Finucane, et al., 2015). Causal analyses methods are still a very active area of 

research, with one notable example being Mendelian randomization (MR), a method 

that can be used to infer causality of an exposure for a complex disease outcome 

(Verbanck et al., 2018; Davey Smith & Ebrahim, 2003). 
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In addition to heritability and genetic correlation analysis, polygenic risk score 

(PRS) based phenotype prediction methodology has also been developed. In their 

simplest forms, PRS are the sum of products of risk alleles at numerous loci with the 

weights derived from GWAS summary statistics reports at those loci (Choi et al., 2020). 

This can be expressed as a simple equation to calculate PRS, Ŝ. 

�̂� =∑𝑋𝑖

𝑛

𝑖=1

𝛽𝑖 , (1-2) 

where Ŝ represents PRS, n represents number of SNPs examined, Xi represents 

number of risk alleles at the ith locus, and βi represents the weight of risk based on 

GWAS summary statistics. This procedure relies on a large-enough discovery sample 

where GWAS is performed to derive weights, and an independent target sample where 

the associations can be examined. Some considerations for valid PRS estimations 

include powered discovery and target samples, proper accounting for ancestry, and 

analysis of LD-independent loci (Euesden et al., 2014; Coombes et al., 2020; Wand et 

al., 2021). There are numerous specific methods for PRS analysis, those utilized in this 

dissertation will be discussed further in later sections. 

Due to these methodological advancements and collaborative science, GWAS 

analyses are still powerful tools for better understanding of genetic underpinnings and 

genetic-based relationships between complex phenotypes. However, adequate sample 

sizes and diversity of samples recruited into these studies remain a major challenge to 

the field. 

Structural Variant Analysis 

CNVs are more complex common variants in the human genome, characterized 

as large deletions or duplications of the genomic segments of size range 10kb to over 
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1Mb (Nussbaum et al., 2016). These deletions can occur on one or both homologous 

chromosomes, leading to complete loss of the genetic material. The duplications can 

also occur on one or both homologous chromosomes, however duplications can also 

occur once, twice, or even more times, leading to substantial amplification of the genetic 

material. CNV analyses from microarrays trace back to the early 2000s, with the use of 

specialized microarrays and analysis tools such as representational oligonucleotide 

microarray analysis (Sebat et al., 2004). The statistical approach to CNV analysis, 

however, is a bit more involved and limited. Unlike GWAS where signals are interpreted 

as binary alleles, CNV analysis relies on direct measurements of hybridization signal 

intensity. This means that CNV analysis is more vulnerable to stochastic and technical 

fluctuations in such signals, and neighboring loci cannot be imputed. Furthermore, CNV 

calls rely on an additional layer of computations using hidden Markov models (HMM) or 

likelihood-based approaches modeled on various copy-number scenarios (Seiser & 

Innocenti, 2014; Illumina, 2014). While SNP arrays can be re-appropriated for the 

purposes of CNV analysis with valid and reliable output, a substantial limitation to this 

approach is the inability to detect sequence-neutral alterations such as translocations 

and inversions (Coughlin, II et al., 2012). Additionally, in the extant literature, multiple 

algorithms for CNV estimation are usually combined to maintain low rates of false 

positive CNV calls and, in some cases, additional in silico or in vitro validations are also 

performed (Marshall et al., 2017; Huang et al., 2017; Wang et al., 2018). 

Much like SNPs, CNVs can also be polymorphic and do not necessarily have a 

clinical consequence (Coughlin, II et al., 2012). About 4.8-9.5% of the human genome is 

subject to common CNV occurrence, and about 100 genes can be deleted completely 
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without apparent phenotypic consequences (Zarrei et al., 2015). Conversely, de novo 

and rare CNVs have been implicated in various neuropsychiatric phenotypes, including 

autism, schizophrenia, and bipolar disorder (Malhotra & Sebat, 2012).  

Like GWAS, methodological advancements and collaboration enable insight into 

genetic risk conferred by these mutations that can in some instances affect multiple 

genes simultaneously. Both global effects of CNVs as well as locus specific CNVs can 

be explored as potential effectors in the psychiatric pathogenesis. 

Psychiatric Genomics 

Developments in genomic methodology and technology have ushered the field of 

psychiatric research into the big data era. The Psychiatric Genomics Consortium (PGC), 

formed in 2007, operates under a central idea of leveraging global collaboration to 

advance genetic discovery of biologically, clinically, and therapeutically meaningful 

insights within the realm of psychiatry (PGC, n.d.). After over a decade of efforts, PGC 

now counts over 800 investigators from over 150 institutions and 40 countries and has 

insofar produced more than 300 publications. Central to PGC efforts are high-

throughput, high-resolution methods like GWAS, CNV analysis, and whole genome and 

exome sequencing with emphasis on elucidating the genetic portions of these complex 

traits, and further informing research that will yield fundamental understanding of 

underlying biology, inform clinical practice, and deliver therapeutic targets (Sullivan er 

al., 2018). 

While a more detailed overview of genomic literature of psychiatric disorders will 

follow in subsequent chapters, there are several key lessons learned in the recent 

history of psychiatric genomics. Multifactorial polygenic inheritance plays a key role in 

transmission of risk of psychiatric disorder development, especially through often 
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neglected common variants which individually confer effects with OR < 1.1 (WTCCC, 

2007). Pleiotropic effects, i.e., the ability of a single variant to influence multiple traits, 

have also been found to be ubiquitous across virtually all psychiatric disorders 

(O’Donovan, 2015). Such findings have led to a conclusion that the heterogeneity of 

psychiatric traits might be traced to variability of genetic risk profiles that underlie them. 

This dissertation aims to further explore pleiotropy and polygenicity, focusing on 

a cluster of neurodevelopmental disorders: obsessive-compulsive and related disorders 

(OCRD), specifically obsessive-compulsive disorder (OCD) and chronic tic disorders 

(TD). OCRDs generally include disorders with similar phenomenological features to 

OCD, are highly comorbid with OCD, or can be considered unusual presentations of 

OCD; including tic disorders (TD), body dysmorphic disorder, hypochondriasis, autism 

spectrum disorder (ASD), and eating disorders (Murphy et al., 2010). It is important to 

note that in DSM-5, OCD is clustered in a group of disorders similarly called OCRD 

which include OCD, body dysmorphic disorder, hoarding disorder (HD), trichotillomania, 

excoriation, etc (APA, 2013). In this dissertation, however, OCRD will be defined as a 

set of neurodevelopmental disorders with shared genetic and phenotypic characteristics 

and focus specifically on OCD, TD, and ASD. 

In the next two chapters I provide an overview of the genomic literature of the 

OCRDs and the complex phenotypic and genetic relationship between them. In the 

subsequent chapter, I explore the relationship between CNVs and OCRDs in a large 

sample of parent-child trios. In the final two chapters, I conduct an association study 

between common variants and OCD, as well as a deeper dive into how best to 

construct the OCD phenotype. 



 

34 

CHAPTER 2 
PROGRESS IN GENOMICS OF NEURODEVELOPMENTAL DISORDERS 

Overview of the Traits 

Neurodevelopmental disorders (NDD) are psychiatric disorders with an onset in 

the developmental period. They usually manifest early in childhood, and their severity 

ranges from transient, mild impairments with minimal effect on everyday life, to severe 

disorders that drastically reduce quality of life and persist well into adulthood.  

Tic Disorders 

Tourette syndrome (TS) was first described by Georges Gilles de la Tourette in a 

1885 collection of case histories of a nervous disorder characterized by involuntary 

movements, repetition of speech, and use of obscene language (Yorston & Hindley, 

1998).  

The Diagnostic and Statistical Manual of Mental Disorders, 5 th edition (DSM5) 

defines tic disorders as neurodevelopmental motor disorders characterized by the 

presence of sudden, rapid, recurrent, nonrhythmic, stereotyped motor movements or 

vocalizations - known as motor and vocal tics (APA, 2013). There are four specific 

diagnostic categories within this cluster TS, persistent motor or vocal tic disorder 

(PMVTD), provisional tic disorder (PTD), and other (un)specified tic disorders. 

Obsessive-Compulsive Disorder 

The history of OCD is a bit more extensive than that of TS. One of the earliest 

potential cases of OCD involves a 7th century record by John Climacus (a Christian 

monk) of a young monk plagued by constant and overwhelming temptations to 

blasphemy (Osborn, 1999), what in modern days would be considered obsessions of 

unwanted taboo (sexual, religious or aggressive) thoughts. A more empirical view of 
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OCD came about in the 20th century, particularly due to the rise of psychoanalytic theory 

and Sigmund Freud, whose approaches to OCD treatment remained dominant until the 

1980s (Zohar, 1987). DSM-5 defines OCD as the presence of recurrent and persistent, 

intrusive, and unwanted, thoughts, urges, and images - obsessions; and/or repetitive 

behaviors or mental acts that one feels driven to perform in response to an obsession or 

according to rules that must be followed rigidly - compulsions (APA, 2013). OCD can be 

further stratified by the insight of the patient, and the presence or absence of tics. 

Genomics of Neurodevelopmental Disorders 

A substantial amount of research has been done to elucidate the genetic 

underpinnings of neurodevelopmental disorders. Initial studies focused on analyses of 

family transmission and family history; however, the field of psychiatric genomics has 

kept pace with developing genomic technologies and methodologies. Modern 

approaches rely on previously discussed high-throughput, computationally demanding 

methods like GWAS or CNV analyses, as well as whole genome and whole exome 

sequencing, to detangle complex relationships between the human genome and 

heterogeneous psychiatric phenotypes. 

Tic Disorders 

Family history and pedigree-based studies have been historically important tools 

in mapping disorders afflicting humans and making inferences about their heritability. 

Despite initial suggestions that TS was heritable, made by Gilles de la Tourette himself, 

the very first published familial instance was that of two sisters and the son of one of the 

sisters in Connecticut in 1973 (Friel, 1973). 

The initial evidence for the significant genetic component to TS etiology came 

from twin studies published nearly 10 years later. Price et al. reported concordance 
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rates for TS as 53% in 30 pairs of monozygotic and 8% in 13 pairs of dizygotic twins; 

expanding the criteria to include any tic disorder resulted in concordance rates of 77% 

and 23% in monozygotic and dizygotic twins, respectively (Price et al., 1985). In another 

study of monozygotic twins, Hyde et al. reported a concordance rate of 56% for TS and 

94% for any tic disorder in 16 pairs of monozygotic twins (Hyde et al., 1992). 

These findings suggest both genetics as a primary driver of TS pathology, and 

notable but incomplete penetrance for the risk variants. This is further corroborated by 

Pauls et al. (1991) in the family study of 86 TS probands and their 338 biological 

relatives, where the rates of TS (8.3%), PMVT (16.3%), and OCD (9.5%) were 

substantially higher among the relatives of TS probands compared to control probands 

(0%, 2.3%, 2.3% for TS, PMVT, and OCD, respectively). This paper is also one of the 

first to demonstrate a possibility of shared genetic risk between TS and OCD. Mataix-

Cols et al. (2015) published a large family study of 4,826 individuals with tic disorders 

(both TS and PMVT) which found the risk of tic disorders in relatives to be proportional 

to genetic relatedness, with first-degree relative (OR = 18.7), second-degree relative 

(OR = 4.6), and third-degree relative (OR = 3.1).  

Subsequent studies have attempted to clarify the pattern(s) of inheritance and 

identify specific genetic variants causing TS. Initial work using segregation and linkage 

studies suggested that TS might be a highly penetrant, sex-influenced, autosomal 

dominant trait, however subsequent studies have suggested that inheritance was not 

dominant and argued for mixed model of inheritance, instead (Pauls & Leckman, 1986; 

Eapen et al., 1993; Hasstedt et al., 1995; Walkup et al., 1996). Despite substantial 
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efforts to identify specific susceptibility genes using linkage studies, no reproducible 

variants have been identified with this method (Singer, 2000; Pauls, 2003). 

Genetic linkage studies take advantage of linkage disequilibrium to identify 

regions of the genome associating with a targeted phenotype. Thus far, various loci 

across 9 different chromosomes have been associated with TS, however none have 

resulted in the discovery of specific causal mutations (Paschou et al., 2004; Ercan-

Sencicek et al., 2010; Qi et al., 2019; Abelson et al., 2005; Díaz-Anzaldúa et al., 2005; 

Simonic et al., 1998; Mérette et al., 2000; Díaz-Anzaldúa et al., 2004). Two potential 

candidates: HDC and SLITRK1 have stood out (Ercan-Sencicek et al., 2010; Abelson et 

al., 2005), however these are likely accounting for a very small proportion of TS cases 

or are family specific. Additional obstacles to validation of these variants might be their 

low penetrance and low frequency. SLITRK1 has been associated with TS on multiple 

occasions, however these associations have not been validated in more recent, large-

scale studies. 

Additional early attempts to elucidate the genetic underpinnings of TS also 

included candidate gene studies. This type of study relies on examining the association 

of specified genes, preselected based on the potential biological relevance, to 

determine allelic contribution to phenotypic manifestation. Unlike linkage studies which 

probe for low-resolution disequilibrium blocks/cytobands, candidate gene studies have 

an advantage of testing for association between a specific gene against the targeted 

phenotype using one or more SNPs in the candidate locus (Qi et al., 2019). Moreover, 

carrying out these tests is relatively simple and inexpensive, which is what made them a 
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popular tool to test specific genes found in associated loci or other genes known to have 

a neurobiological function (Qi et al., 2017).  

However, these experiments are vulnerable to high false-positive rates, and the 

results are usually difficult to validate for several reasons, but principally due to 

disregard for population structure, variable allele frequencies, and inability to accurately 

reproduce/measure phenotypes in animal models. Numerous candidate genes have 

been tested, yet for all of them, validation has proven to be difficult (Qi et al., 2017; Brett 

et al. 1995; Chou et al., 2007; Thompson et al., 1998; Gelernter et al., 1993; Brett et al., 

1995; He et al., 2015; Abdulkadir et al., 2017; Hebebrand et al., 1993; Barr et al., 1997; 

Cavallini et al., 2000; Tarnok et al., 2007; Barr et al., 1999). 

Studies probing structural genomic variation have historically relied on traditional 

molecular biology techniques to assess structural changes in the genomes of the 

patients. These variants have been usually classified as chromosomal insertions, 

deletions, duplications, inversions, translocations, and copy-number variations. The 

inexhaustive list of methods to detect these variants include G-banding via Giemsa 

stain, DNA (fluorescent) in-situ hybridization or (F)ISH, comparative genome 

hybridization (CGH), chromosome microarray analysis, quantitative polymerase chain 

reaction (qPCR), and (Sanger) sequence analysis. Numerous loci, most notably 

SLITRK1, have been found to associated with TS (Karagiannidis et al., 2013; Bertelsen 

et al., 2014; Melchior et al., 2013; Hooper et al. 2012; Patel et al., 2011; Lawson-Yuen 

et al. 2008; Pies 2008; Jankovic & Deng, 2007; Shelley et al., 2007; Belloso et al., 2007; 

Robertson et al., 2006; Abelson et al., 2005; Cuker et al., 2004; Crawford et al., 2003; 

Verkerk et al., 2003; State et al., 2003; Kerbeshian et al., 2000; Petek et al., 2001; 
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Matsumoto et al., 2000). It is important to note, however, that most of these findings 

identify rare structural variants that are unique to individuals or individual families, and 

thus, while they may be useful for identifying genes and biological pathways of interest, 

as individual risk variants, their generalizability is limited. 

While there have been multiple genetic studies of TS, only in the past decade 

has progress in understanding the genetic architecture of this disorder accelerated. In 

part this is due to an increased understanding of the complex and often polygenic effect 

of diverse genetic variants on TS risk. While informative, most of the previous studies 

have a limited reach due to small sample sizes and limited resolution of genome testing. 

These limitations have been greatly ameliorated by the introduction of large-scale, 

population stratified, genome-wide techniques such as genome-wide microarrays, 

whole exome, and whole genome sequencing. 

Members of the PGC workgroup for TS and OCD have so far published three 

different TS GWAS projects (Scharf et al., 2013; Yu et al., 2019; Tsetsos et al., 2021). 

While only a single locus was identified at a genome-wide significance threshold in the 

second and largest of these studies, with the first identifying no loci that met this 

criterion, they have nevertheless provided valuable insights into genetic architecture of 

TS. The third study took an alternative approach of analyzing gene sets.  

Scharf et al. (2013) was the first reported GWAS of TS, looking at 1,285 TS 

cases and 4,964 ancestry matched controls. This study looked at individuals of 

European ancestry from 20 sites across USA, Canada, Netherlands, and Israel. While 

no markers were associated with TS at a genome-wide significance threshold, the top 

signal found was rs7868992 marker on chromosome 9q32 within COL27A1 gene (p = 
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1.85 × 10-6). The second phase of the study looked at additional samples from two 

closely related Latin American population isolates from the Central Valley of Costa Rica 

(124 cases) and Antioquia, Colombia (87 cases), for a total of 1,496 cases. The same 

rs7868992 marker emerged as the top signal (p = 3.60 × 10-7) in this expanded sample. 

Subsequent enrichment analysis of expression and methylation quantitative trait loci 

(eQTL and mQTL, respectively) found that the top SNPs from the primary analysis were 

nominally enriched for eQTL in frontal cortex (p = 0.045), borderline enriched for eQTL 

in cerebellum (p = 0.077), and nominally enriched for mQTLs in cerebellum (p = 0.011). 

The authors of this study also examined the associations of 2,135 SNPs that fell within 

50kb of 24 previously reported TS candidate genes within this GWAS. None of these 

SNPs met the threshold for statistically significant association with TS. 

In the second published GWAS, Yu et al. (2019) performed genome-wide 

association studies using 4 different TS datasets, resulting in the final GWAS meta-

analysis which consisted of 8,265,319 SNPs and 4,819 TS cases (1,285 of which were 

from the first GWAS by Scharf et al., 2013), and resulted in a genome-wide significant 

hit of rs2504235 locus on chromosome 13p12.2 (p = 2.1 × 10-8), with an odds ratio of 

OR = 1.16. This marker lies within an intron of FLT3, a tyrosine kinase gene. However, 

this SNP was not replicated in the independent replication sample from Iceland. SNP-

based heritability estimates of TS yielded hSNP
2 = 0.56 in the Scharf et al. (2013) sample 

and hSNP
2 = 0.29 in the large web- and clinic-based sample. 

Ancestry-adjusted PRS was calculated from the GWAS meta-analysis and found 

to be larger, on average, in case subjects from multiplex versus simplex families. 

Additionally, higher TS PRS was significantly correlated with increased worst-ever tic 
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severity (β = 0.93; SE = 0.42; p = 0.026). Subsequently, this PRS was compared in the 

replication sample from Iceland. TS PRS was significantly higher in Icelandic TS cases 

(OR = 1.33; p = 5.3 × 10-9) and PMVT/unspecified tic disorder cases (OR = 1.20; p = 5.2 

× 10-4). These variants also explained 0.78% and 0.42% of phenotypic variance, 

respectively. The direct comparison of these two groups confirmed higher PRS burden 

in TS (OR = 1.14; p = 0.05), representing an excess of 0.37% of the phenotypic 

variance. This evidence is compatible with the idea of tic disorders being a single 

continuous neurodevelopmental tic spectrum disorder, with TS being a more severe 

manifestation thereof. Gene-based enrichment and association analysis performed 

using meta-analysis summary statistics in MAGMA and gene expression data in GTEx 

identified FLT3 as significant after correcting for 18,079 gene tests. No gene sets were 

significantly associated with TS after multiple testing correction, and the only adult 

human tissue associating with TS after multiple testing correction was the dorsolateral 

prefrontal cortex. 

Tsetsos et al. (2021) examined microarray genotype data from the former GWAS 

studies, looking at 3,581 TS cases and 7,682 ancestry-matched controls, investigating 

associations of TS with sets of genes expressed in neurons, glia, and neuronal-related 

cells. The analysis resulted in identification of four sets: cell adhesion and trans-synaptic 

signaling (identified twice by two different methods), the ligand-gated ion channel 

signaling, and the lymphocytic set. Genes within these sets have previously been 

associated with cognitive performance, depression, anxiety, Asperger’s syndrome, 

eating disorders, and bipolar disorder with schizophrenia, and several other phenotypes 

known to be either co-occurring with or disrupted in TS. 
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The first genome wide CNV study in TS was reported in 2010 (Sundaram et al., 

2010). Total of 307 CNVs were identified in 111 TS cases, and 216 CNVs were 

identified in 73 controls. There was no difference in overall CNV burden, or by CNV type 

(deletions vs. duplications). CNVs of all sizes were examined, however filtering criteria 

in CNV calling involved coverage of at least 10 markers which limits the ability to look at 

small CNVs - such filtering was necessary to reduce rates of false positive CNV calls. A 

noteworthy limitation of this study is the lack of diagnoses of commonly comorbid 

disorders, making it difficult to distinguish between TS and pleiotropic CNVs. In addition 

to small sample size complicating inferences about burden of observed CNVs, the case-

control design limits the ability to infer if CNVs are inherited (and transmitted with TS) or 

de novo. 

A subsequent study of 460 TS cases (148 trios) and 1,131 controls (436 trios) 

reported on rare CNVs (Fernandez et al, 2012). There was no difference in overall CNV 

burden in cases vs. controls, or by CNV etiology (inherited vs. de novo). However, 

cases were marked by larger and more gene rich CNVs, albeit the differences were 

statistically not significant. A total of 745 rare, high confidence CNVs in cases and 1,910 

in controls were found. One major limitation of this study is the small sample size, which 

was further exacerbated by the removal of 185 probands during QC and ancestry 

matching. 

Nag et al. (2013) published a study on Latin population including 210 TS cases 

and 285 controls found a significant excess of large CNV calls (> 500kb; p = 0.006). 

Among those large CNVs were also NRXN1 and COL8A1. In addition to CNV changes 

in those regions, authors also found chromosomal rearrangements using multiplex 
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ligation-dependent probe amplification (the same technique was used to validate the 

CNVs in those two genes). Subsequent analyses of parents found that COL8A1 was 

inherited whereas NRXN1 was a de novo variant. However, this conclusion is limited 

since only a small subset of parents was available for testing. Additionally, parents were 

only tested for COL8A1 and NRXN1 using a low throughput method. 

Bertelsen et al. (2016) looked specifically at AADAC deletion in a large European 

cohort of 1,181 TS cases and 118,730 controls and found an increased AADAC 

association with TS in the final meta-analysis (OR = 1.9; p = 4.4 × 10-4). 

The very first large-scale, high-throughput case-control study of CNVs in TS 

involved 2,434 cases and 4,093 controls (Huang et al., 2017). CNVs were called using 

PennCNV and QuantiSNP, resulting in 9,375 rare CNV calls. Genic CNVs (n = 4,604) 

showed a significant but modest increase in burden for CNV count (OR = 1.05; p = 

0.027), CNV gene count (OR = 1.09; p = 0.019), and CNV length (OR = 1.15; p = 1.9 × 

10-4) in TS cases vs. controls. The highest burden was attributable to large CNVs, > 

1Mb (OR = 1.26; p = 5.3 × 10-3), and singleton CNVs (OR = 1.13; p = 2.9 × 10-3). 

Further stratifying CNVs by their pathogenicity (according to the American College of 

Medical Genetics guidelines, as published by Riggs et al., 2020) showed a higher 

burden of pathogenic CNVs (OR = 3.03; p = 1.5 × 10-5), particularly when it comes to 

CNV deletions (OR = 3.94; p = 6.3 × 10-4). Further analysis revealed a high burden of 

NRXN1 deletions (OR = 20.3, p = 8.5 × 10-4) and CNTN6 duplications (OR = 10.1, p = 

8.3 × 10-3). Pair-matching cases with their closest ancestry matched controls revealed 

that these results were not due to inter-European population stratification. There are 

several limitations to this study, including the fact it was a case-control design which 
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limits discerning between de novo and inherited CNVs, a sample size that is still too low 

to detect rare CNVs or those with moderate effect sizes, and limited data on 

comorbidities (only information on attention deficit/hyperactivity disorder, ADHD, and 

OCD were available). 

Whole exome sequencing (WES) analysis of 789 TS trios and 1,136 quartets 

from the Simon Simplex Cohort (SSC) resulted in identification of 27 de novo CNVs 

(Wang et al., 2018). Incidence rate ratios (IRRs) were increased in two independent 

sets of TS samples and in the combined dataset: IRR1 = IRR2 = IRR12 = 2.2 (p1 = 0.004; 

p2 = 0.024; p12 = 0.0025). Further analysis found that both de novo deletions (IRR = 

2.13; p = 0.04) and duplications (IRR = 2.25; p = 0.015) are risk factors for TS. There 

was also an increased rate of de novo CNVs in ASD probands in the SSC sample, and 

the rate of de novo CNVs did not differ between ASD and TS (rate ratio of de novo CNV 

burden among TS probands to SSC probands was 1.10, but not significant at p = 0.83). 

A separate analysis of 412 TS trios and 763 SSC quartets using microarray data 

replicated the finding of an increased CNV burden (but not the specific CNVs) from the 

WES experiment. There was an increased burden of de novo CNVs in TS samples (IRR 

= 2.8; p = 0.024), specifically in de novo CNV deletions (IRR = 3.8; p = 0.02). Similarly, 

the rates were increased in ASD, but no difference in rates between ASD and TS were 

observed (rate ratio of de novo CNV burden among TS probands to SSC probands was 

0.89, but not significant at p = 0.63). Further analysis revealed that 46.3% of the de 

novo CNVs identified in this study were associated with TS and that 1.5% of TS cases 

carried such variants. Cross-disorder comparison has revealed that de novo CNVs 

observed in TS have also been observed in other disorders like ASD, SCZ, and 
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epilepsy. While this study could resolve the origin of the CNVs (de novo vs. inherited) 

and had a decent sample size, it was still underpowered to delineate CNVs with 

moderate effects. 

The last CNV study to be briefly discussed is a discordant twin-pair WES study 

which only involved a single family where the father and proband (but not their 

monozygotic twin) had TS (Vadgama et al., 2019). This study found a single CNV 

duplication spanning TOP3B and NLGN1 genes of the father and the discordant 

affected monozygotic twin. 

So far, there have been 8 different studies that examined genetic variation in TS 

using high throughput sequencing approaches, specifically looking at WES and WGS. 

One of the first studies to do that looked at the exome of a 10-member, 3-generation 

pedigree where 7 members had diagnosed TS/PMVT (Sundaram et al., 2011). The 

authors report 3 novel, nonsynonymous single nucleotide variants (SNVs) in MRPL3, 

DNAJC13, and OFCC1 genes segregating with chronic tic (CT) phenotype, but not 

present in controls and either dbSNP or 1000 Genomes databases (Cukier et al., 2014). 

Willsey et al. (2017) conducted a WES on two independent TS cohorts and found de 

novo likely gene disrupting variants are present in 5% cases, and 11.6% of the cases 

carried a de novo damaging (although not necessarily gene disrupting) variant 

contributing to TS risk. Maximum likelihood estimation (MLE) predicted that about 420 

genes were contributing to TS risk. Four genes were significantly enriched for probably 

damaging missense and likely gene disrupting variants, one of which was classified as 

a high-confidence TS gene (WWC1) and three as probable TS risk genes (CELSR3, 
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NIPBL, and FN1). Additional MLE analysis further illustrated the importance of sample 

sizes in genetic studies of complex phenotypes (visualized on Figure 2-1). 

A small-scale study of a 3-generation, 9-member multiplex family recruited 

through TIC Genetics cohort reported a rate heterozygous nonsense mutation in PKND 

co-segregating with TS phenotype (Sun et al., 2017). A previously discussed study by 

Wang et al. (2018) has also reported de novo sequence variants in TS, identifying 2 

high-confidence TS genes (validating WWC1, in addition to CELSR3) and 4 probable 

TS risk genes (validating NIPBL and FN1, in addition to OPA1 and FBN2). A smaller trio 

study looking at 97 TS trios and a replication sample of 524 TS cases has suggested 

ASH1L as a susceptibility gene in TS (Liu et al., 2019). A small WES study of 15 TS 

trios has found 25 coding de novo variants (Zhao et al., 2020). One of the affected 

genes in one TS proband was CELSR3, a high-confidence TS gene identified in 

previous studies. A small-scale WES study of Chinese Han families with TS has 

resulted in identification of CLCN2 as a potentially important, but ultimately not 

statistically significant, gene in TS (Yuan et al., 2020). 

Although there is a WGS study planned by the PGC-TSOCD workgroup, there 

have been no large-scale whole genome sequencing studies on TS published so far. 

This represents a significant gap in knowledge, particularly around the importance of 

intergenic variation on risk of TS. It is furthermore important to note that there is a 

substantial overlap in samples in a lot of studies discussed above, which limits the 

potential for meta-analysis of the results. Nonetheless, Table 2-1 summarizes the most 

important findings from genomic probes into TS genetics, with OR estimates reported 

where available. 
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A brief gene ontology (GO) analysis of the genes identified across the genomic 

studies of TS (as listed in Table 2-1), has shown enrichment among genes involved in 

embryonic and anatomical structure morphogenesis and developmental biological 

processes; extracellular matrix function, organization, and structure; integrin signaling 

pathways. Table 2-2 shows a complete list of GO terms, as well as fold-enrichment, 

direction, and false discovery rate (FDR) corrections for p-values. Method for GO 

analysis is described in Chapter 5 section Methods, subsection Gene Ontology 

Analysis. 

While a substantial amount of effort has been put into genetic analysis of TS, 

most of the studies are still limited in statistical power due to small sample sizes. 

Recurrent observation of extracellular matrix and cell structure genes highlights the 

developmental nature of TS. Continued recruitments and expanded collaborative 

networks will play a substantially important role in driving further discoveries of novel 

variants associating with the TS. 

Obsessive-Compulsive Disorder 

As is the case with TS, the earliest genetic studies of OCD were also primarily 

twin and family studies. One of the earliest studies that examined multiple twin pairs in 

1936 reported three cases of monozygotic twin-pairs presenting with OCD-like 

symptomatology. Two of those pairs had similar severity of OCD-like symptoms, with 

one of those pairs being twins raised apart. In the third pair, one twin had more severe 

and chronic OCD-like symptoms, whereas the other twin only had an acute episode of 

contamination symptoms (Lewis, 1936). A subsequent, larger study of twin pairs has 

found OCD to be present in both twins in 10/11 instances (Tienari, 1963). Subsequent 

studies have found an 80% concordance rate among monozygotic twins and a 20% 
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concordance rate among dizygotic twins (Inouye, 1965); and an 87% concordance 

among monozygotic, and 47% concordance among dizygotic twins (Carey & 

Gottesman, 1981). A large twin study examining incidence and cross-disorder instances 

of OCD, tics, and anxiety in 854 pairs has reported tetrachoric correlations. For OCD, 

the cross-twin tetrachoric correlations were 0.57 and 0.22, for monozygotic and 

dizygotic twins, respectively. For tics, the cross-twin tetrachoric correlations were 0.64 

and 0.33 for monozygotic and dizygotic twins, respectively. Ultimately, for coinciding 

OCD and tics, the cross-twin cross-trait tetrachoric correlations were 0.25, 0.19, and 

0.28 for the whole sample, monozygotic pairs, and dizygotic pairs, respectively (Bolton 

et al., 2007). More recent large-sample, cross-cultural twin studies of over 4,200 twin 

pairs have estimated OCD and OC behaviors heritability to be at 0.55 and 0.65, 

respectively (Eley et al., 2003; Hudziak et al., 2004). 

In a family study of 145 first-degree relatives (ascertained on 46 probands with 

OCD), 30% of probands had at least one first-degree relative with OCD: 25% of fathers 

and 9% of mothers received this diagnosis, and 13% of both mothers and fathers had 

subclinical obsessive-compulsive behaviors (Lenane et al., 1990). A case-control family 

history analysis found a marked increase of lifetime OCD prevalence among first-

degree relatives in cases vs. controls, 11.7% vs. 2.7%, respectively (Nestadt et al., 

2000). In a small family study ascertained on 7 OCD probands and 65 relatives, 49.2% 

of the relatives had a diagnosis of OCD, 42.9% of the probands had co-occurring TS, 

and 78.1% of the relatives with OCD had a history of tics compared to none of the 

relatives without OCD (Hanna et al., 2002). A subsequent, slightly larger study of 106 

probands with OCD, 44 control probands, and their 465 first-degree relatives has found 
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high rates of comorbid TS (33%) and PMVT (13.2%). Case relatives had a higher risk of 

OCD (OR = 32.5) and PMVT (OR = 7.9). The same study found that childhood onset 

OCD was indicative of higher OCD prevalence among first-degree relatives, and 

potentially higher genetic loading (do Rosario-Campos et al., 2005). Another study 

family study of 144 OCD probands has found 44% comorbidity with tic disorders among 

the probands, 17% rate of OCD and 12% rate of tic disorders among the relatives, with 

32.6% of the probands having a relative with OCD (Chabane et al., 2005). The 

occurrence of tics among OCD probands and relatives is fairly common, another study 

of 100 OCD probands has reported the first-degree relative rates of 10.3% of OCD, 

7.9% of subclinical OCD, and 4.6% of tic disorders. Among the probands who had tic 

disorders in addition to OCD, the reported first-degree relative rates are 18.2% for OCD 

and 4.6% for tic disorders (Pauls et al., 1995). This sampling of numerous family 

aggregation and segregation, and twin studies of OCD highlights an important genetic 

component to this disorder. 

Several genome-wide linkage studies have been conducted to analyze 

segregation patterns in OCD families resulting in several susceptibility loci, but no 

specific genes have been identified using this methodology (Brett et al., 1995; 

Weissbecker et al., 1989; Pauls, 2010; Nestadt et al., 2000; Hanna et al., 2005; Shugart 

et al., 2006; Mathews et al., 2012; Nestadt et al., 2011). However, over 80 candidate 

gene studies have been examined, mostly focusing on serotonin transporters and 

receptors, tryptophan hydroxylase (involved in serotonin synthesis), dopamine 

transporters and receptors, and a few more neurobiologically relevant genes. As was 

the case with TS, out of numerous attempted studies on candidate genes, no instances 
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were ever successfully validated, particularly in large-scale genome-wide studies (Brett 

et al., 1995; Weissbecker et al., 1989; Pauls, 2010; Nestadt et al., 2000; Hanna et al., 

2005; Shugart et al., 2006; Mathews et al., 2012; Nestadt et al., 2011; Comings et al., 

1993; Billett et al., 1997; Nicolini et al., 1996; Billett et al., 1998). This lack of replicable 

results further illustrates the need for larger sample sizes and genome-wide 

approaches, as well as attention to comorbidities and endophenotypes (Altemus et al., 

1996). 

Despite generating an extensive amount of research on the genetic etiology of 

OCD, the risk-conferring variants remain elusive. As is the case with many other 

complex disorders, detangling complex genetic underpinnings will require large sample 

sizes and population stratified, genome-wide resolution approaches. The limitations of 

early approaches reliant on traditional molecular biology techniques have been 

somewhat resolved with modern population-stratification-conscious statistical genomic 

approaches, which are less vulnerable to false positive rates, such as GWAS studies. 

There have been several GWAS studies reported for OCD. The very first 

collaborative effort by the International OCD Foundation Genetics Collaborative 

(IOCDF-GC) was published in 2013 (Stewart et al., 2013). After QC, 1,465 cases, 5,557 

ancestry-matched controls, and 400 complete trios were analyzed on 469,410 

autosomal and 9,657 X-chromosome SNPs. Albeit no genome-wide significant hits were 

found in the case-control sample, the two lowest p-value hits were located within a 

single gene, DLGAP. Analysis specific to the trio sample found one genome-wide 

significant SNP located 90kb upstream of BTBD3 (p = 3.84 × 10-8). Meta-analysis of trio 

and case-control data resulted in no significant associations. Attempts to validate 
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putative OCD linkage regions and 22 candidate genes resulted in no significant hits 

either, thus failing to validate regions and genes in this sample. Significant enrichment 

was found in frontal eQTL (p = 0.001), cerebellar eQTLs (p = 0.033), and parietal 

eQTLs (p = 0.003). Additionally, significant enrichment was found in cerebellar mQTLs 

(p < 0.001). Additional miRNA and pathway analyses were conducted; however, no 

evidence of enrichment was found after multiple testing corrections. 

The second GWAS study was published shortly thereafter (Mattheisen et al., 

2014). A total of 2,895 samples from OCGAS have passed QC pipeline, 1,406 of which 

were OCD cases. Additional 192 cases without any genotyped family members were 

included, as well as 1,984 unrelated controls from a previously reported study on 

Parkinson’s disease (Hamza et al., 2010). Overall, 549,123 autosomal SNPs were 

included in the analysis after QC. No markers were significantly associated with OCD at 

genome-wide significance level. The marker with the lowest p-value was located on 

chromosome 9, 1.3Mb downstream of the PTPRD (p = 4.13 × 10-7). Gene-based 

analysis for 21,567 protein-coding genes and miRNAs in two significant hits: C16orf88 

(p = 1.94 × 10-7) and IQCK (p = 1.94 × 107). A query of interactome revealed 16 

interacting genes for DLGAP1 and 14 interacting genes for GRIK2, notably GRIK2 was 

identified as an interactor for DLGAP1. The authors also attempted to conduct 

additional miRNA enrichment analysis; however, no significant results were reported. 

The two GWAS studies, independently published by the two independent OCD 

consortia: IOCDF-GC and OCGAS, have been meta-analyzed together (IOCDF-GC & 

OCGAS, 2018). The resulting sample of 2,688 cases and 7,037 controls were analyzed 

across 8,693,187 markers. No SNPs were significant at genome-wide level, but 29 LD-
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independent SNPs were observed with p < 10-5. PRS scores were derived for OCD in 

each of the samples, and subsequently tested in the other sample. IOCDF-GC samples 

reasonably predicted case-control status in OCGAS sample, at p = 0.003 and explaining 

0.9% of the phenotypic variance. Similarly, OCGAS samples reasonably predicted 

case-control status in the European IOCDF-GC sample, at p = 0.0009 and explaining 

0.9% of the phenotypic variance. Genome-wide complex trait analysis (GCTA) of the 

samples revealed heritability estimates of hSNP
2 = 0.32, hSNP

2 = 0.25, and hSNP
2 = 0.25 

for IOCDF-GC, OCGAS, and combined sample, respectively. Linkage disequilibrium 

score regression on the combined sample resulted in the heritability estimate of hSNP
2 = 

0.28. Additionally, analysis of genetic correlation between the two samples resulted in rg 

= 0.83; SE = 0.28; p = 0.003. Ultimately, the largest proportion of heritability was 

attributed to the highest allele frequency bins (MAF > 0.4), further substantiating the 

polygenic nature of OCD and significant contribution of common variants to its 

expression.  

Another GWAS study looked at the sex-specific differences in the genetic 

architecture of OCD, utilizing genotyping data from the previous two GWAS studies 

(Khramtsova et al., 2019). The final sample included 1,249 male cases, 2,789 male 

controls, 2,774 female cases, and 7,096 female controls. While no individual SNPs were 

significant at the genome-wide significant level, there were two significant genes at the 

genome-wide significance level as computed by MAGMA, these genes were female-

specific. They include GRID2 (pF = 1.07 × 10-7; pM = 7.23 × 10-1) and GPR135 (pF = 

1.55 × 10-6; pM = 7.04 × 10-1). The difference in LDSC (linkage disequilibrium score 

regression) heritability estimates between males and females was not significant, and 
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the genetic correlation between sexes was substantial (hSNP, M
2 = 0.131; SEM = 0.097; 

hSNP, F
2 = 0.296; SEF = 0.079; hg

2 = 1.043; SEg = 0.509; pg = 0.041). Restricted 

maximum likelihood (REML) method yielded similar results for heritability estimates and 

genetic correlation. Furthermore, REML estimation of X chromosome-specific heritability 

resulted in hX
2 = 0.01 (SE = 0.005; p = 0.006; 3.8% of total OCD heritability). X 

chromosome heritability in females was not significantly different from that in males. Sex 

differentiated effects have shown significant enrichment in for eQTLs from CD4+ T cells, 

the combination of immune tissues, and combined brain tissues excluding the 

functionally distinct cerebellum. No significant enrichments in eQTLs were found for 

SNPs. There was little overlap and no enrichment for anthropometric sex differentiated 

effects. 

OCD is not a homogenous disorder and there is a substantial variability in OCD 

severity among the probands. A recent study published in 2020 looked at quantitative 

GWAS of OCD severity (Alemany-Navarro, Cruz, Real, Segalàs, Bertolín, Baenas et al., 

2020). The Yale-Brown Obsessive Compulsive Scale (Y-BOCS) was used to measure 

OCD severity. Total of 376 European ancestry Spanish OCD cases and 258,937 SNPs 

passed QC and were included in the study. No SNPs were significant at the genome-

wide level or have passed a multiple testing correction. There were 6 SNPs associated 

with OCD severity at a less stringent level, p < 10-5. No genes were significantly 

associating after multiple testing correction, but the lowest p-value hits included 

SLC8A1, MAP4K4, WTAP, and SLC22A10. Functional annotation resulted in significant 

enrichment of porin activity, transmembrane, and MAPK signaling categories. 
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The same lab published another GWAS study simultaneously, looking at genetic 

determinants of dimensional variability in OCD (Alemany-Navarro, Cruz, Real, Segalàs, 

Bertolín, Rabionet et al., 2020). A total of 376 European ancestry Spanish OCD cases 

and 258,937 SNPs passed QC. Data were collected using the Dimensional Y-BOCS, 

including the following dimensions: aggression, contamination, order, hoarding, and 

sexual/religious. No SNPs were significant at the genome-wide level; however, some 

significant hits did occur at the lower level of stringency (p < 10-5) for the aggressive, 

contamination, order, and hoarding dimensions. Gene-based associations revealed a 

genome-significant gene associating with the hoarding dimension (SETD3, p = 1.9 × 10-

9), and a gene associating with the aggressive dimension (CPE, p = 4.4 × 10-6). 

In addition to the genetic studies of OCD, it is important to make note of 

dimensional GWASes of OCD and obsessive-compulsive symptoms. Burton et al. 

(2021) reported the first validated genome-wide significant variant for OC traits 

(PTPRD), based on obsessive-compulsive symptom scores derived from TOCS in the 

Spit for Science sample. They also report a high, albeit not significant, association 

between TOCS obsessive-compulsive symptom score and OCD (rg = 0.71, p = 0.062). 

CBCL obsessive-compulsive symptom scores analyzed in the same study resulted in no 

genome-wide significant associations, although the top-scoring variant was in the same 

direction and of similar effect size to that identified in the TOCS analysis. 

Only two studies to date have looked specifically at CNVs in OCD (additional 

cross-disorder studies will be discussed in the next chapter). The first study, published 

in 2016, looked at 307 cases of unrelated idiopathic OCD, including 174 from parent-

child trios, and 3,861 ancestry matched controls via WES (Gazzellone et al. 2016). 
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Among trios, 4 probands were found to carry a de novo CNV. While authors reported 

cases with CNVs in genes that have been associated with other psychiatric disorders 

like schizophrenia, ASD, and fragile X syndrome, burden analyses revealed no 

statistically significant associations. 

The second study looked at 121 pediatric OCD cases and 124 random controls 

to identify rare CNVs (Grünblatt et al., 2017). They did not find a significant burden 

associated with frequency or size of rare CNVs. However, further stratifying the data by 

expression patterns revealed significantly higher frequency of rare CNVs affecting brain 

related genes (OR = 1.98, p = 0.0398), especially deletions (OR = 3.61, p = 0.021), in 

patients. Furthermore, enrichment analysis of gene content confirmed clustering of 

genes involved in synaptic/brain related pathways in patients, but not in controls. Two of 

the patients carried CNVs previously associated with different neurodevelopmental 

disorders, including NRXN1. 

There have been 3 studies of WES in OCD, one of which focused primarily on 

CNVs and was thus discussed in the previous subsection. The second WES study 

examined 17 OCD simplex trios (Cappi et al., 2016). Out of the genes carrying single 

nucleotide variants (SNVs) identified by the WES, 3 have been previously identified in 

CNV studies in TS (NDE1, SLC35G5, and WWP1) and OCD (VCX2 and NDE1) cases. 

Functional network enrichment implicated embryonic development, cell-to-cell signaling, 

cell death and survival, and cellular function and maintenance. No significant overlap 

was found with other neurodevelopmental disorders.  

Recently, a more comprehensive WES study by the same lab provided more 

insight into SNV burden in OCD (Cappi et al., 2020). In total, 184 OCD trios and 777 
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unaffected trios from the SSC cohort were used to compare contributions of inherited 

and de novo SNVs in cases and controls. Overall, 22% of cases carry a damaging de 

novo mutation contributing to OCD risk. Recurrent SNVs have been found in SCUBE1 

and CHD8 which were subsequently classified as high-confidence OCD risk genes, 

based on transmission and de novo association (TADA) algorithm (He et al., 2013). 

MLE analysis estimated that about 335 genes contributed to OCD risk. Power 

calculations have yielded projected discovery of high-confidence and probable risk OCD 

genes with varying numbers of trios (visualized on Figure 2-1), indicating at least 500 

trios necessary for discovery of probable risk genes.  

Just as is the case with TS, no large-scale WGS studies of OCD were reported 

insofar, leaving a large gap in knowledge that needs to be addressed. 
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Table 2-1. Summary of results from genomic studies of TS. 

Study Type Gene OR P 

Genome-Wide Association Studies 

Scharf et al. (2013) SNP COL27A1 1.29 1.9 × 10−6 

Yu et al. (2019) SNP FLT3 1.16 2.1 × 10−8 

Copy-Number Variant Analyses 

Nag et al. (2013) Deletion NRXN1 - 3.0 × 10−2 

 Duplication COL8AA1 - 4.0 × 10−3 

Huang et al. (2017) Deletion NRXN1 20.30 8.5 × 10−4 

 Duplication CNTN6 10.10 8.3 × 10−3 

Whole Exome Sequencing Analysis 

Willsey et al. (2017) SNV WWC1 - 7.3 × 10−6 

 SNV CELSR3 - 1.7 × 10−5 

 SNV NIPBL - 5.4 × 10−5 

 SNV FN1 - 5.9 × 10−5 

Wang et al. (2018) SNV WWC1 - 1.9 × 10−5 

 SNV CELSR3 - 2.2 × 10−5 

 SNV OPA1 - 6.7 × 10−5 

 SNV NIPBL - 1.1 × 10−4 

 SNV FN1 - 1.2 × 10−4 

 SNV FBN2 - 1.3 × 10−4 

Liu et al. (2019) SNV ASH1L - 1.4 × 10−3 
Note: The summary only includes genes identified from genome-wide approaches.  
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Table 2-2. GO enrichment analysis of previously identified important TS genes. 

GO Term Fold-enrichment +/- PFDR 

Biological Process 

Anatomical structure morphogenesis 7.07 + 4.4 × 10−3 

System development 4.61 + 1.3 × 10−2 

Uterus morphogenesis > 100.00 + 2.2 × 10−2 

Multicellular organism development 4.16 + 2.4 × 10−2 

Embryonic morphogenesis 14.64 + 3.9 × 10−2 

Molecular Function 

Extracellular matrix molecular constituent 39.67 + 1.2 × 10−2 

Cellular Component 

Endoplasmic reticulum lumen 2.00 + 4.8 × 10−2 

Pathways 

Integrin signalling pathways 25.74 + 3.0 × 10−2 

Protein Class 

Extracellular matrix structural protein 71.49 + 9.0 × 10−4 

Extracellular matrix protein 48.33 + 2.1 × 10−4 

Reactome Pathways 

Extracellular matrix organization 28.69 + 1.2 × 10−3 
Note: Table shows only the statistically significant enriched terms after Benjamini Hotchberg correction for 
multiple testing. Methods described in Chapter 5. 
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Figure 2-1. Theoretical discovery of high-confidence and probable TS (upper) and 

OCD (lower) risk genes for a given number of trio families. Data obtained 
from Wang et al. (2017) and Cappi et al. (2017) MLE simulations. 
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CHAPTER 3 
COMPLEX RELATIONSHIP BETWEEN NEURODEVELOPMENTAL DISORDERS 

Clinical Perspective 

TS and OCD are both psychiatric disorders with a substantial developmental 

component. Phenotypically, TS and OCD share some characteristics, for example, 

premonitory urges to tic could be seen as a form of obsession (Reese et al., 2014). 

Furthermore, the complex phenotypic relationship between TS and OCD may be 

explained, in part, by highly heritable cross-disorder symptom clusters: symmetry and 

disinhibition (Darrow et al., 2017; Hirschtritt et al., 2016). Symmetry, generally 

understood as an OCD-related set of symptoms, includes symptoms like evening up, 

checking obsessions, ordering, and arranging, counting, etc., which also occur among 

individuals with TS (Rosario-Campos et al., 2006). Conversely, disinhibition is typically 

understood as TS-related set of symptoms and it includes obsessive urges to offend, 

mutilate, or be destructive, coprolalia (involuntary and repetitive use of obscene 

language), copropraxia (involuntary and repetitive use of obscene gestures), etc., which 

can also occur among individuals with OCD (Darrow et al., 2017). Darrow and 

colleagues (2017) have estimated heritability of these shared symptom clusters to be 

0.38 and 0.35 for symmetry and disinhibition, respectively, which demonstrates that 

these symptom clusters are not only shared between disorders, but also have a 

significant genetic component indicating an underlying shared biological etiology. 

Beyond shared phenotypic characteristics, TS and OCD are highly comorbid and 

usually exhibit evidence of familial clustering. For example, Hirschtritt et al. (2015) have 

found 66.4% of patients with TS to have comorbid OCD. OCD comorbidity was higher 

among females than males (70.6% vs. 64.4%, p = 0.03). Claudio-Campos et al. (2021) 
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found similar rates of comorbidity. Interestingly, rates of comorbid OCD were higher 

among TS cases than PMVT cases, 65.6% vs. 42.6% at p < 0.001, indicating OCD 

comorbidity may be a function of TD severity. A meta-analysis of OCD comorbidity 

among PMVT vs. TS cases in the same study found OR = 0.37, further solidifying 

evidence of OCD symptomatology and comorbidity being a function of the severe end of 

the TD spectrum.  

A population-based study of Danish national health registries of 1,741,271 

individuals born between 1980 and 2007 has found relative recurrence risk (RRR) of 

TD-OCD cross-disorder to be similar to OCD-OCD among the siblings (Browne et al., 

2015). RRR for TD among individuals given older siblings with TD was 18.63 (p < 

0.001), whereas RRR for OCD among the same individuals was 3.98 (p < 0.001). RRR 

for TD among individuals given older siblings with OCD was 4.88 (p < 0.001), RRR for 

OCD among same individuals was 4.89 (p < 0.001). RRR for TD among individuals with 

siblings who have both TD and OCD was 26.37 (p < 0.001), whereas RRR for OCD 

among same individuals was 10.90 (p < 0.001). Similar patterns of RRR were observed 

when examining parent-proband relationships as opposed to older sibling-proband 

relationships.  

A family study of 222 TS-affected sib-pair families has found significant genetic 

correlations between TS-OCD and OCD-ADHD, but not between TS-ADHD (Mathews & 

Grados, 2011). Heritability analysis of OCRDs from this study has found heritabilites to 

be: hTS
2 = 0.32, hTD

2 = 0.29, hOCD
2 = 0.56, hADHD

2 = 0.68, hOCD+ADHD
2 = 0.62. Analysis of 

genetic and environmental correlations among these disorders has revealed genetic 

correlations to be stronger between TS-OCD and ADHD-OCD, whereas the 
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environmental correlation was stronger between TS-ADHD. Interestingly, the correlation 

between TD broadly defined and obsessive-compulsive symptoms (OCS) was 1.0, 

indicating a perfect correlation, but this relationship was not statistically significant. 

However, genetic correlations for TS-OCD were 0.92 (p = 2 × 10-5), OCD-ADHD was 

0.63 (p = 1 × 10-4), and TS-OCS was 0.90 (p = 7 × 10-4). Significant environmental 

correlations were noticed between TS-ADHD at 0.66 (p = 2 × 10-3), and TS-OCS at 0.35 

(p = 1 × 10-2). While a larger sample size would be beneficial, this paper clearly shows 

that family members of individuals with TS would be at an increased risk of TS, OCD, or 

some combined form of these two disorders. 

The clinical overlap between these two disorders is so significant that some 

clinicians distinguish clinical presentations of comorbid TD and OCD as Tourettic OCD 

(TOCD). Specifically, individuals who are usually diagnosed with TOCD are those who 

present with OCD and some of the following symptomatology: (1) pronounced touching, 

tapping, and repeating behaviors that serve an identifiable function of relieving somatic 

discomfort or vague psychological distress; (2) a preoccupation with unrelenting 

discomfort for nonperformance of the repetitive behaviors; and (3) the presence of 

unelaborated obsessional themes (Mansueto & Keuler, 2007).  

While conceptualization of TOCD might be clinically relevant and beneficial for 

the treatment purposes, further exploration of such an idea is necessary to determine 

whether TOCD symptomatology is simply a result of TD and OCD comorbidity. 

Additionally, genetic studies of such a construct would be helpful in determining whether 

TOCD and OCD are genetically divergent, and thus potentially a consequence of 

different underlying pathophysiological processes. Nonetheless, there is clear evidence 
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of co-occurrence of symptoms traditionally conceptualized as TD and OCD. 

Furthermore, there is clear evidence of clinical overlap in symptomatology and familial 

aggregation which indicates that such shared symptomatology might result from shared 

genetic factors. Recently, several genetic studies have examined such relationships, 

and will be discussed in the next section. 

Genetic Perspective 

Motivated by clinical findings and reports, genetic studies of psychiatric disorders 

often analyze genetic correlations between such related disorders. Examples of such 

paired psychopathology include schizophrenia and bipolar disorder, ADHD and ASD, 

depression and anxiety, and TD and OCD.  

While OCD and TD do share some of the underlying genomic architecture, they 

also have their distinct components (Yu et al., 2015). Additionally, comorbid TD-OCD 

may have distinct underlying genetic susceptibility compared with OCD on its own. The 

study examined 1,310 OCD cases, 834 TS cases, 579 TS-OCD cases, 290 OCD trios, 

and 5,667 controls. No genome-wide significant loci were found in the GWAS analysis. 

PRS analysis of this sample has revealed that pure OCD (OCD without TD) was better 

at predicting OCD cases (measured by Nagelkerke’s pseudo R2), at RN
2 = 0.032, 

compared to all OCD cases at RN
2 = 0.021. When the discovery sample was a 

combination of OCD and TD cases, this association was even smaller at RN
2 = 0.017. 

TS cases alone were not as good at predicting OCD case status, at RN
2 = 0.0004 

Conversely, pure OCD was not very good at predicting TS case status, at RN
2 = -0.012. 

Combined OCD and TD and TS alone performed similarly, at RN
2 = 0.002 and RN

2 = 

0.006, respectively. All associations except pure OCD → OCD, OCD → OCD, 

combined TD and OCD → OCD were not statistically significant. Potential explanation 
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for poor performance of TS predictions could be imbalance between OCD and TS cases 

in the sample: 1,600 pure OCD cases vs. 834 TS cases. Notwithstanding, this paper 

shows OCD with and without chronic tics may have different genetic architectures. 

The largest cross-disorder GWAS to date was a 2019 report from the Cross-

Disorder Group of the PGC (Lee et al., 2019). This collaborative effort examined 

232,964 cases, 494,162 controls, and 6,786,993 SNPs from genome-wide studies of 

anorexia nervosa (AN), ADHD, ASD, bipolar disorder (BPD), major depression (MDD), 

OCD, schizophrenia (SCZ), and TS. The notable genetic correlations include SCZ-BPD 

(rg = 0.70), OCD-AN (rg = 0.50), MDD-ASD (rg = 0.45), MDD-ADHD (rg = 0.44), and 

OCD-TS (rg = 0.41). Network analysis of the correlations reveals three disorder clusters: 

SCZ-BPD, TS-OCD-AN, and MDD-ADH-ASD. Cross-disorder meta-analysis revealed 

136 LD-independent loci at genome-wide significance level, 101 overlap with previously 

reported loci, while 35 of them represent novel genome-wide significant associations. 

Further analysis concluded that the number of cross-disorder associations was 

correlated to the statistical power as given by the following formula: 

𝐵𝐴−𝐵 = √𝑁𝐴 × 𝑁𝐵 × ℎ𝐴
2 × ℎ𝐵

2 × 𝑟𝑔,𝐴−𝐵
2  , 

(3-1) 

where BA-B stands for power of cross-disorder association test between disorders A and 

B, NA and NB stand for sample size in GWASes of disorders A and B, hA
2 and hB

2 stand 

for narrow-sense heritability of disorders A and B, and rg, A-B
2 stands for genetic 

correlation between the two traits. Psychiatric disorder-associated loci have shown a 

significant enrichment in genes expressed in pituitary and all brain tissues in the GTEx. 

Genes mapped to the 146 risk loci show higher expression values in neurons and 

oligodendrocytes, with much higher neuronal specificity for pleiotropic loci. GO analysis 
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(described in Chapter 5 methods section) suggests involvement of pleiotropic loci in 

neurodevelopmental processes, with enrichment in genes involved in neurogenesis, 

regulation of nervous- system development, neuron differentiation, and specific 

neurotransmitter-related pathways including glutamate receptor signaling and voltage-

gated calcium channel complex. Pleiotropic risk genes were also enriched in cortical 

glutamatergic neurons, providing further support for the involvement of glutamate 

receptor signaling pathways in etiopathogenesis of various neuropsychiatric disorders. 

More than 41% of the genes in these pleiotropic loci were found to be intolerant to the 

loss-of-function mutation (exceeding chance occurrence with Fisher’s exact test p = 4.9 

× 10-8). No significant differences in spatiotemporal expressions were found. Pleiotropic 

risk loci were also enriched among genes associated with neuroticism, cognitive ability, 

night sleep phenotypes, and BMI (supporting previous suggestions of association 

between psychiatric disorders and obesity). 

Another large study examined shared heritability between 25 common brain 

disorders using data from 265,218 patients and 784,643 control participants (Anttila et 

al., 2018). Cross-disorder genetic associations revealed a high degree of relationship 

between TS with ADHD, MDD, and OCD, and between OCD with AN, BPD, MDD, SCZ, 

and TS. Comparison of psychiatric disorders and neurological phenotypes revealed 

similarities between OCD and TS, especially relating to (focal) epilepsy and migraines 

(with aura). However, TS and OCD had opposite correlations with educational 

attainment and cognitive performance (TS and OCD were negatively and positively 

correlated, respectively). Both disorders were characterized by neuroticism, depressive 

symptoms, and diminished subjective well-being. 
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A more recent analysis of OCRDs including OCD, TS, and ASD, as well as 

ADHD has found the highest pairwise genetic correlation to exist between TS and OCD 

(Yang et al., 2021). LDSC analysis of PGC GWAS summary statistics reports yielded 

the following genetic correlations: rg, TS-OCD = 0.38 (p = 2.00 × 10-4), rg, ADHD-ASD = 0.35 (p 

= 1.33 × 10-11), rg, TS-ADHD = 0.26 (p = 2.05 × 10-5), rg, TS-ASD = 0.18 (p = 5.50 × 10-3), rg, 

ASD-OCD = 0.12 (p = 1.50 × 10-1), rg, ADHD-OCD = -0.17 (p = 2.00 × 10-2). These findings 

highlight the importance of considering comorbid disorders and their relationships in 

genomic analyses, as discrete diagnostic boxes fail to capture the shared genetic risk. 

While genetic relationships between OCD and TS are consistently substantial, 

both OCD and TS are found to share genetic risk factors with other disorders. A 

combined GWAS between OCD and ADHD with a final combined dataset consisting of 

2,998 OCD samples and 5,415 ADHD samples yielded no genome-wide significant 

associations, however 0.08% overlap between genetic data in ADHD and OCD was 

noted (Ritter et al., 2017).  

 Another study looked at combined GWAS between OCD and ASD, with the 

combined OCD-ASD dataset consisting of 9,896 individuals (2,998 OCD cases, 6,898 

ASD cases) also found no genome-wide significant marker associations (Guo et al., 

2017). However, cross-disorder PRS approximated 0.11% of shared genetic variance 

between ASD and OCD. 

A recent study reported a GWAS between OCD and AN, including 6,183 cases 

and 18,031 controls (Yilmaz et al., 2020). No variants were found to be significant at the 

genome-wide level. Heritability estimates were: hAN
2 = 0.18, hOCD

2 = 0.29, hAN-OCD2 = 

0.21. The genetic correlation between the two disorders was reported at rg = 0.49 (SE = 
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0.1, p = 9.10 × 10-7). Nineteen additional phenotypes have been significantly associated 

with AN-OCD shared genetic risk, notably: BPD, neuroticism, SCZ, and years of 

schooling. No significant enrichment was found in GTEx tissue types. No significant 

pathways were found. A single gene, KIT, was found to be significantly associated with 

AN-OCD. 

So far, there has only been a single study focusing on cross-disorder CNV 

analysis between TS and OCD (McGrath et al., 2014). Sample consisted of 2,699 cases 

(1,613 OCD, 1,086 TS) and 1,789 controls. Parental data allowed a de novo analysis in 

348 OCD trios. No global CNV burden was found in cross-disorder analysis or disease-

specific analysis. There was a 3.3-fold increased burden of large deletions previously 

associated with other neurodevelopmental disorders. Regional analysis revealed 

16p13.11 as an important locus in neurodevelopmental disorders and accounts for 

many called CNVs. 

No high-throughput cross-disorder WES or WGS studies have been conducted to 

evaluate the shared and distinct genetic risks associated with above mentioned 

psychiatric disorders. 

Cross-disorder genetic studies highlight the importance of phenotype definitions. 

In addition to considering comorbid disorders and genetic relationships between them, 

novel approaches that consider symptom dimensions in addition to diagnostic 

categories might yield to increased power of genetic studies of neurodevelopmental 

psychiatric disorders. These efforts, however, depend highly on the number of available 

large samples which have been thoroughly phenotyped.
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CHAPTER 4 
EXPLORATION OF OCRD PHENOTYPES IN ABCD STUDY 

Background 

OCD is highly heritable with a substantial genetic component; however, the 

genetic architecture of OCD is very complex, and little is known about exact causative 

genetic factors and pathways (Strom et al., 2021). Large-scale collaborative efforts and 

advancements in statistical methodology have driven progress in the field of psychiatric 

genomics, slowly unearthing numerous loci associating with psychiatric disorders and 

ushering the field into the era of polygenic and pleiotropic effects, and a paradigm shift 

towards complex genetic architecture as a probabilistic rather than deterministic factor 

in disorder etiology (Reynolds et al., 2021). 

One of the main drivers of the novel discoveries, and power-driving factors in 

genome-wide association studies in general, is sample size. Collaborative approaches 

have led to aggregation of large datasets, or summary statistics of smaller datasets, 

which have been combined by meta-analyses to increase power and drive discoveries. 

Additionally, large, coordinated initiatives with wide phenotyping range such as the 

adolescent brain cognitive development (ABCD) study contribute data usable for 

psychiatric genomics, despite it not being the primary aim thereof (Bjork et al., 2017). 

However, simulation studies have shown that phenotype misclassification may present 

serious challenges to GWAS power and be as important if not more important than 

sample size (Manchia et al, 2013). When it comes to psychiatric disorders like OCD, 

where phenotype classification agreements between clinicians can be challenging, self- 

or parent-report-based data as those in the ABCD study can have extensive rates of 
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phenotype misclassification and negatively impact GWAS power (Freedman et al., 

2013). 

My initial epidemiological exploration of the ABCD study cohort revealed 

overrepresentation of OCD in the sample, 13.4% prevalence compared to the expected 

(reported) 2.3% prevalence in early adolescence (Zohar, 1999). Such inflation of OCD 

prevalence in a sample which was not ascertained for psychiatric disorders or OCD risk 

factors raises concerns of potentially high phenotype misclassification rates with high 

potential impact to secondary analyses, like GWAS. In such analyses, high rates of 

misclassification can be detrimental to test power and p-value inflation. However, the 

rich longitudinal data made available in the ABCD Study cohort provides an opportunity 

to explore various diagnostic refinement techniques to improve the accuracy of the 

psychiatric diagnoses. Because the ultimate goal in this dissertation is to conduct 

genetic analyses of OCD and tic disorders in ABCD Study, proper classification of those 

phenotypes is of utmost importance. 

The ABCD Study utilizes a self-administered modified form of the computerized 

Kiddie Schedule for Affective Disorders and Schizophrenia for DSM-5 (KSADS-5) semi-

structured interview to collect psychiatric symptom data and establish a diagnosis 

(Kaufman et al., 2021). The KSADS-5 is a tool developed primarily to be administered 

by clinicians, thus self(parent)-administration of the KSADS-5 in the ABCD study might 

explain such an unexpectedly high prevalence of OCD in the cohort. Table 4-1 

summarizes disorder modules from the KSADS-5 by individuals who took it (parent or 

child) and the time-point of the study at which they have taken it. Figure 4-1 shows the 
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progress of ABCD study in terms of KSADS-5 data releases, given that actual data 

collections are ahead of the corresponding data release by about 1 year. 

There are a few studies examining the validity of KSADS-5 when self-

administered. Namely, Townsend et al. (2019), found substantial discrepancies 

between clinician-, parent-, and self-administered KSADS-5. Specifically, when it came 

to parents and youth, only in 63% of instances were they in agreement with respect to 

OCD diagnosis. This discrepancy was predominantly driven by a low positive 

agreement of 29%, whereas the negative agreement was relatively high at 85%. Youth 

were found to report OCD at a higher rate than parents, with endorsement frequency of 

OCD being 49.1% and 26.4%, respectively. These discrepancies were more severe 

when looking at clinicians and youth, where the rate of agreement was slightly higher at 

66%, but it was driven mostly by a good negative agreement at 95% yet marked by a 

remarkably lower positive agreement of 18%. Unlike the youth, who endorsed OCD in 

49.1% of instances, clinicians only endorsed OCD in 9.4% of instances. Ultimately, 

clinicians and parent discrepancies were lower, given agreement rate of 82%, which is 

mainly characterized by high negative agreement at 94% and low positive agreement at 

26%. While parents had a closer rate of endorsement to clinicians than youth, they still 

endorsed OCD at 2.8-times higher rate. Youth endorsed OCD at a 5.2-times higher rate 

compared to clinicians. Since OCD diagnostic information in the ABCD study comes 

predominantly from parent-rated KSADS-5 data, the particular statistic of concern is low 

clinician-parent positive agreement at 26%. Due to such low agreement, it follows that 

using KSADS-5 data as reported in the ABCD data might be suboptimal in genetic 

analyses. Reliability of the KSADS-5 as it was originally designed to be used when it 
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comes to OCD diagnosis is quite high, with Cohen’s kappa score of 0.74 (Young, 2010). 

However, when it comes to OCD specifically, KSADS-5 is not an extremely reliable tool 

when self-administered according to Townsend et al. (2020), with child-clinician 

Cohen’s kappa of 0.15 (with youth overreporting), parent-clinician Cohen’s kappa of 

0.25 (parent overreporting), and parent-youth Cohen’s kappa of 0.14 (youth 

overreporting). Self-report performance was much better when it comes to mood and 

anxiety disorders. 

There are several inventories that measure OCD symptomatology and its 

dimensional psychopathology which could be used to further delineate which cases 

represent true OCD diagnosis and which are false-positive. A non-exhaustive list of 

them includes the Yale Brown Obsessive Compulsive Scale (YBOCS), the obsessive-

compulsive inventory-revised (OCI-R), the dimensional obsessive-compulsive scale 

(DOCS), the Toronto obsessive-compulsive scale (TOCS), and the child behavioral 

checklist (CBCL). Notably, CBCL is not specifically an OCD scale, alebit OCD-specific 

questions are included in its global assessment of the childhood psychiatric symptoms. 

The YBOCS (Goodman, 1989) is currently the most widely utilized inventory to 

capture severity of OCD without being influenced by the specific content of obsessions 

or compulsions. It consists of a symptom checklist, with between 30 and 90 items, 

depending on the version, and a clinician-administered 10-item symptom severity scale, 

with each item being rated on a 5-point scale. Five items assess obsession symptom 

severity, and five items assess compulsion symptom severity. Inter-rater reliability of the 

YBOCS severity portion on 40 patients by 4 raters was 0.97 for obsessions items, 0.96 

for compulsions items, and 0.98 for overall inventory (Goodman, 1989).  



 

72 

Woody et al. (1995) conducted a study further characterizing the validity and 

reliability of the YBOCS inventory. Looking at the construct validity, total YBOCS score 

was not significantly influenced by participants’ age, sex, or socioeconomic status. On 

subscale level, compulsions were positively associated with age (but not sex or 

socioeconomic status). Additionally, the YBOCS severity portion scores were unaffected 

by comorbid depression, further solidifying its ability to measure OCD-specific effects. 

However, obsession items were correlated with anxiety - indicating potential 

confounding. It is important to note that, traditionally and at the time of developing this 

inventory, OCD was considered an anxiety disorder - so by the sheer nature of the 

disorder definitions, as anxiety is a symptom of OCD, some overlap in phenomenology 

of the two would be expected. The DOCS is a 20-item measure that assesses the four 

dimensions of OC symptoms developed for use in both clinical and research settings 

(Abramowitz et al., 2010). Essentially a derivative of YBOCS, DOCS assesses severity 

of individual OCD symptoms. 

The OCI-R is a revised form of the OCI inventory that was revised to eliminate 

redundant items, simplify the scoring across subscales, and reduce overlap across 

subscales (Foa et al., 2002; Foa et al., 1998). The TOCS is a 21-item multidimensional 

measure of OC traits in children and adolescents with sound psychometric properties, 

and a normal distribution in an unselected sample of children (Park et al., 2016). All of 

these inventories are suitable for OCD symptom assessment (and in case of DOCS, 

OCD diagnosis); however, they are not as widely utilized as the YBOCS. OCD is still 

underrepresented when it comes to the number, quality, and availability of inventories, 

batteries, or questionnaires, compared to other disorders. This has a substantial impact 
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on OCD diagnosis and screening in epidemiological studies, especially when it comes 

to large population screens where clinician-assisted testing is not a viable option. 

Furthermore, little is known about racial, ethnic, and socio-cultural impacts on validity 

and reliability of these measures - which may raise concerns about their performance in 

racially or ethnically diverse populations such as the ABCD Study. Regardless, none of 

these measures were administered to either parents or youth in the ABCD Study at the 

time of analysis, so they cannot be used to refine the OCD diagnosis in this sample. 

Instead, the ABCD Study used a broader dimensional tool, the child behavioral checklist 

(CBCL). 

The CBCL is probably the most used tool of all of the aforementioned tools and is 

a caregiver report form aiming to identify problem behavior in children. It is a part of the 

Achenbach system of empirically based assessments (ASEBA), which primarily focuses 

on detecting behavioral and emotional problems in children and adolescents. Other 

tools in the ASEBA include a teacher report form and a youth self-report. Despite not 

being a tool designed to formally assess OCD, there are two questions in the CBCL that 

assess severity of obsessions and compulsions, specifically. The CBCL is designed to 

be completed by the parents, which eliminates the need for a trained mental health 

professional or clinical researcher, allowing for unhindered use in self-report-based 

research projects such as the ABCD study. Various OCD subscales have been derived 

from the CBCL to assess the predictive power of the CBCL as OCD diagnostic tools, 

yielding some success but not meeting the same level of success as dedicated OCD 

scales or semi-structured diagnostic interviews. For example, a 6-item CBCL subscale 

that included the two OCD and four additional anxiety related questions was found to 



 

74 

accurately identify 77% of OCD cases (Storch et al., 2006) – in this dissertation, I will 

refer to this subscale as the obsessive-compulsive problems (OCP) subscale. 

Questionable reliability of self-report diagnoses, or diagnoses based on self-

report data in large initiatives is not a new issue, and several approaches have been 

developed to address these problems. For example, studies in the brain health registry 

(BHR), which features predominantly self-report data for most participants and clinically 

determined diagnoses of various DSM-5 psychiatric disorders in a subset of participants 

who underwent direct assessments has shown that consistent self-reports of psychiatric 

illnesses are useful markers for clinician-diagnosed psychiatric illness (Sordo Vieira et 

al., 2022). In this study, incorporating the temporal consistency of self-report of a given 

psychiatric disorder diagnosis resulted in improved diagnostic precision (PPMMDD = 

0.85, PPVHD = 1.00) and specificity (TNRMDD = 0.92, TNRHD = 1.00). Thus, I take this 

approach using the KSADS-derived OCD diagnoses in the ABCD sample to distinguish 

between individuals with high-confidence OCD diagnoses, to be classified as narrow 

OCD (nOCD), and individuals with low-confidence OCD diagnoses, to be classified as 

broad OCD (bOCD). 

The ABCD study is a large scale, longitudinal brain development and child health 

study (n = 11,924), with rich phenotype data. The participants are recruited at the age of 

9-10 and followed every 3-6 months until the age of 19-20 (Figure 4-1). There are 

numerous data collected for this cohort via in person and phone interviews, paper tests, 

iPad tasks, brain imaging, and biosamples. These data include neurocognitive and 

mental health assessments, as mentioned before. Data are housed by the National 

Institute of Mental Health (NIMH) Data Archive (NDA), where they are openly shared 
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with researchers upon request with approval of an institutional review board (IRB). 

Overall, the ABCD cohort consists of 11,924 samples (48% female). A K-SADS report is 

available for 11,877 samples (48% female). 

The overarching goal for this chapter is to explore OCD and related phenotypes 

in the ABCD study to refine the diagnoses for subsequent genetic studies. I hypothesize 

that, due to lower rate of false-positive diagnoses in nOCD compared to bOCD, nOCD 

will be marked by higher rates of psychiatric comorbidity and more severe scores on 

CBCL individual item and subscale compared to bOCD.  

Methods 

Diagnoses 

KSADS-5 reports diagnosis as a categorical variable with values 0 (absent) or 1 

(present) for each disorder for both past and present. KSADS-5 reports based on parent 

self-administration (about their child) and youth self-administration (about themselves) 

were made available via NDA. Lifetime disorder diagnosis (LDx) is a Boolean or 

operation between past (DxPAST), present (DxPRESENT), and remission (DxREMISSION) 

diagnosis variables where available and can be mathematically represented according 

to Equation 4-1.  

𝐿𝐷𝑥 = 𝐷𝑥𝑃𝐴𝑆𝑇  ⋁𝐷𝑥𝑃𝑅𝐸𝑆𝐸𝑁𝑇  ⋁𝐷𝑥𝑅𝐸𝑀𝐼𝑆𝑆𝐼𝑂𝑁  . (4-1) 

LDx variable is equivalent to combined broad and narrow diagnoses, to be 

denoted with a bn prefix (e.g. bnOCD). To separate broad diagnoses from narrow, I first 

find a cumulative sum of lifetime diagnoses (CDx) for each participant across all time 

points where a module for a given disorder was administered (see Table 4-1 and Figure 

4-1). This operation is mathematically represented as:  
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𝐶𝐷𝑥 =∑𝐿𝐷𝑥𝑡

𝑇

𝑡=1

 , 
(4-2) 

where t represents a time point iteration from the total number of timepoints with 

available disorder diagnoses T. Subsequently, if a given KSADS-5 module was 

administered to both youth and parents, I calculate the sum of lifetime diagnoses (TDx). 

If the module was administered only to parents or only to youth, then TDx is equivalent 

to parent or youth CDx, respectively. TDx can also be mathematically represented as: 

𝑇𝐷𝑥 = 𝐶𝐷𝑥𝑌𝑂𝑈𝑇𝐻 + 𝐶𝐷𝑥𝑃𝐴𝑅𝐸𝑁𝑇𝑆 . (4-3) 

Ultimately, we can assign a final categorical diagnostic variable as diagnosis 

negative (coded as 0) if TDx = 0, broad diagnosis (coded as 1) if 0 < TDx ≤ T/2, and 

narrow diagnosis (coded as 2) if T/2 < TDx, where T/2 represents half of the total 

number of follow-ups in which the given disorder was assessed. This can also be 

mathematically represented as: 

 

𝐹𝐷𝑥 =

{
 
 

 
 
0, 𝑇𝐷𝑥 = 0

1, 0 < 𝑇𝐷𝑥 ≤
𝑇

2

2,
𝑇

2
< 𝑇𝐷𝑥

  . 
(4-4) 

It is worth noting that this process is a modified form of that from Sordo Vieira et 

al. (2022), specifically their form of consistent longitudinal diagnosis endorsements 

termed “most.” For example, OCD module of KSADS-5 was only administered to parent 

at the baseline and year 2 follow-up (Table 4-1). Additionally, for OCD, only available 

diagnoses were OCD present and OCD past. Thus, according to the process outlined 

above, children whose parents endorsed OCD in either present or past in both baseline 
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and year 2 follow-up were labeled as nOCD cases. Conversely, children whose parents 

endorsed OCD in either present or past in either baseline or year 2 follow-up, but not 

both, were labeled as bOCD cases. 

Diagnosis values for tic disorder (TD) were a bit different as TD diagnoses were 

not reported in the KSADS-5 report. The TD module of KSADS-5 was assessed only in 

year 3 follow-up and data are currently only available for about half of the entire ABCD 

cohort. Additionally, the TD module of KSADS-5 in the ABCD Study only reports 

diagnoses for other unspecified tic disorder, but not TS or PMVT. Thus, I utilize 

symptom-level (which corresponds to DSM-5 item-level) data to derive TD diagnosis 

values. Figure 4-2 shows a decision diagram for determining TD diagnosis. Briefly, 

lifetime symptom tics, both phonic/vocal and motor, are calculated in a similar fashion 

as LDx in Equation 4-1 and labeled as LSx, where Sx stands for symptoms. 

Subsequently, Dx for narrow TD is estimated by finding individuals who have both 

phonic/vocal and motor tics, as shown in Equation 4-5. Broad TD can be estimated 

according to Equation 4-6, identifying individuals who have ither phonic/vocal or motor 

tics, but not both. It is important to note that, unlike other disorders, TD was only 

assessed once so far, at year 3 follow-up (corresponding to the age of about 12), so 

temporal consistency of the symptoms was not assessable. 

𝐹𝐷𝑥𝑇𝐷 = 𝐿𝑆𝑥𝑃𝐻𝑂𝑁𝐼𝐶  𝑇𝐼𝐶𝑆⋀𝐿𝑆𝑥𝑀𝑂𝑇𝑂𝑅  𝑇𝐼𝐶𝑆   . (4-5) 

𝐹𝐷𝑥𝑇𝐷 = 𝐿𝑆𝑥𝑃𝐻𝑂𝑁𝐼𝐶  𝑇𝐼𝐶𝑆⋁𝐿𝑆𝑥𝑀𝑂𝑇𝑂𝑅  𝑇𝐼𝐶𝑆   . (4-6) 

Prevalence Rates 

Prevalence rates are calculated as a ratio of the number of individuals with a 

disorder to the number of all individuals who were assessed for that disorder (Sullivan, 
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2017; Friis & Sellers, 2020). The following set of equations defines how prevalence 

rates for broad + narrow (pBN) and narrow (pN) diagnoses were calculated, together with 

their standard errors and 95% confidence intervals (using the formula for sample 

proportions confidence intervals).  

�̂�𝐵𝑁 =
∑ 𝐼𝐵𝑁(𝐹𝐷𝑥)
𝑛
𝑖=1

𝑛
 (4-7) 

𝐼𝐵𝑁(𝐹𝐷𝑥) = [𝐹𝐷𝑥 > 0] (4-8) 

𝑆𝐸[�̂�𝐵𝑁] = √
�̂�𝐵𝑁(1 − �̂�𝐵𝑁)

𝑛
 (4-9) 

95% 𝐶𝐼[�̂�𝐵𝑁] = �̂�𝐵𝑁 ± 1.96 × 𝑆𝐸[�̂�𝐵𝑁] (4-10) 

�̂�𝑁 =
∑ 𝐼𝑁(𝐹𝐷𝑥)
𝑛
𝑖=1

𝑛
 (4-11) 

𝐼𝑁(𝐹𝐷𝑥) = [𝐹𝐷𝑥 > 1] (4-12) 

𝑆𝐸[�̂�𝑁] = √
�̂�𝑁(1 − �̂�𝑁)

𝑛
 (4-13) 

95% 𝐶𝐼[�̂�𝐵𝑁] = �̂�𝐵𝑁 ± 1.96 × 𝑆𝐸[�̂�𝐵𝑁] (4-14) 

Reference prevalence rates were obtained from the literature. If possible, US 

based prevalence rates of psychiatric disorders among children and adolescents were 

used. Reference prevalence rates for bipolar disorder (BPD), panic disorder (PD), 

separation anxiety disorder (SeAD), social anxiety disorder (SoAD), specific phobia 

(SP), generalized anxiety disorder (GAD), eating or feeding disorder (EFD), oppositional 

defiant disorder (ODD), conduct disorder (CD), post-traumatic stress disorder (PTSD), 

and alcohol use disorder (AUD) are based on the Merikangas et al. (2010) study. The 

reference prevalence rate for OCD was based on the Zohar (1999) study. The TD 
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reference prevalence was based on the Scharf et al. (2012) study. The BED reference 

prevalence was based on Kjeldbjerg & Clausen (2021). The SPD reference prevalence 

was based on Lewien et al. (2021). 

Note that diagnoses were made using KSADS-5 which was developed on the 

DSM-5 diagnostic manual, whereas the reference prevalence rates are based on the 

DSM-IV diagnostic manual. Nonetheless, the changes for listed disorders between the 

two editions of DSM are not substantial enough to warrant concerns over prevalence 

rate comparisons (APA, 2013; APA, 2000). 

Comorbidities were calculated by first subsetting individuals with a primary 

disorder of interest, then calculating the prevalence rate of the secondary disorder in the 

subset sample. Equation 4-15 demonstrates an example mathematical formula for 

calculation of comorbid narrow TD (secondary) among individuals with OCD (primary), 

CTD|OCD. 

𝐶𝑇𝐷|𝑂𝐶𝐷 = 𝑃 (𝐹𝐷𝑥𝑇𝐷 = 2 ⋂𝐹𝐷𝑥𝑂𝐶𝐷 = 2) (4-15) 

Deciding which disorder is set as primary plays an important role when it comes 

to epidemiological assessments of psychiatric disorders because comorbidities are not 

symmetric. For example, tic disorders occur in about 15.3% of adults and 11.9% of 

children with OCD (Sharma et al., 2021). Conversely OCD occurs in about 66.1% of 

children with TS or 38.0% children with a TD (Hirschtritt et al., 2015; Huisman‐van Dijk 

et al., 2019). 

CBCL Variables 

To calculate the scores for the obsessions and compulsions, I take the 

longitudinal sum of the obsessions and compulsions questions from the CBCL over the 
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first 3 timepoints, that is, the sum of CBCL9 and CBCL66, respectively. Any item CBCL 

score, CBCL_ITEM, can be calculated in a similar way. The sum of the obsessions and 

compulsions items was used to derive OCS score. The mathematical operation is 

shown in Equations 4-16 and 4-17. 

𝐶𝐵𝐶𝐿𝐼𝑇𝐸𝑀 =∑𝐶𝐵𝐶𝐿𝐼𝑇𝐸𝑀,   𝑖

3

𝑖=1

 
(4-16) 

𝑂𝐶𝑆 = 𝐶𝐵𝐶𝐿9 + 𝐶𝐵𝐶𝐿66 (4-17) 

Similarly, a 6-item OCP score as described by Storch et al. (2006) can be found 

by summing the following CBCL items: CBCL9 (obsessions), CBCL31 (fears of 

thinking/doing something bad), CBCL52 (feelings of guilt), CBCL66 (compulsions), 

CBCL85 (strange ideas), and CBCL112 (worries). Thus, the OCP score can be 

mathematically represented according to the Equation 4-18. 

𝑂𝐶𝑃 = 𝐶𝐵𝐶𝐿9 + 𝐶𝐵𝐶𝐿31 + 𝐶𝐵𝐶𝐿52 + 𝐶𝐵𝐶𝐿66 + 𝐶𝐵𝐶𝐿85 + 𝐶𝐵𝐶𝐿112 (4-18) 

Analysis of CBCL and Diagnoses 

Odds ratio with 95% confidence intervals were extracted from logistic regressions 

of OCS, OCP, compulsions, and obsessions scores to narrow and broad diagnosis 

values covarying for sex (Tsuang et al., 2011; R Core Team, 2013). Histogram plots 

and OR plots are included to visually represent distributional patterns of these 

quantitative constructs. 

I analyze these constructs with respect to OCD and TD. In case of OCD, my goal 

is to see if parent reports of symptom severity associate with their endorsement of OCD. 

I also want to identify which symptoms are primary drivers of OCD endorsement. In 

case of TD, I want to see if parent reports of symptom severity associate with TD as TD 

usually presents with some obsessive-compulsive symptoms and is highly comorbid.  
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Computational Resources 

All computations were performed in RStudio version 1.4.1106, using R version 

4.0.5 (2021-03-31), on x86_64-apple-darwin17.0 (64-bit) platform running under macOS 

Big Sur 10.16. Logistic regressions were fit using generalized linear models with 

binomial link in stats package (R Core Team, 2013). Data wrangling, transformations, 

and visualizations were done using the tidyverse set of packages (Wickham et al., 

2019). 

Results 

There is an Over-endorsement of Psychiatric Disorders in the ABCD Study 

Analysis of the prevalence of psychiatric disorders as depicted in Figure 4-3a and 

Table 4-2 shows large rates of over-endorsement in the ABCD Study. All disorders 

except for CD, EFD, PD, PTSD, and SoAD were substantially more prevalent in the 

sample than expected based on reported population prevalences, with the largest over-

endorsements being in TD (8.24 times the reference rate) and OCD (5.80 times the 

reference rate). The prevalence of broad OCD was slightly higher among males vs. 

females (13.25% vs. 11.50%). 

Narrow Definitions Reflect Reference Prevalence Rates Better  

After modifying definitions for diagnosis and looking at the narrow definitions 

specifically, the prevalences of psychiatric disorders decreased across the board and 

more closely resembled the reported reference prevalence rates (Figure 4-3b, Table 4-

2). Nonetheless, some disorders were still overrepresented, albeit to a less extreme 

extent, such as TD (1.89 times the reference prevalence rate) and OCD (1.13 times the 

reference prevalence rate). Conversely, using this definition, some disorders were 

underrepresented relative to population prevalences, like PD (0.03 times the reference 
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prevalence rate) and EFD (0.07 times the reference prevalence rate). Notably, as a 

group, EFD disorders excludes AN which was pulled from the dataset due to 

programming concerns, thus the EFD category is lacking one of the more relevant 

contributing disorders. 

The prevalence of narrow OCD using the modified Sordo Viera method was 

slightly higher among males vs. females (3.69% vs. 2.28%). This finding is in line with 

literature reports of slightly higher OCD rates among males in this age group. 

Comorbidities Show Variability Between nOCD and bnOCD 

Comorbidity analysis of OCD indicated that comorbidity profiles differed between 

nOCD and bnOCD (Figure 4-4). Looking specifically at TD and OCD, 46.81% of 

individuals in the narrow category who had TD also had OCD, whereas 5.55% of 

individuals in the narrow category who had OCD also had TD. Conversely, 35.04% of 

individuals in the broad or narrow category with TD also had OCD, yet 18.16% of 

individuals in the broad or narrow category with OCD also had TD. These comorbidity 

rates approximate those reported in the literature: 11.9% of children with OCD having 

comorbid TD (Sharma et al., 2021) and 38.0% of children with a TD having comorbid 

OCD (Huisman‐van Dijk et al., 2019). However, due to a low prevalence of OCD in the 

sample and only a fraction of the sample being assessed for TD, this number could be 

an underestimate. 

OCS is a Better Predictor of nOCD than OCP  

Based on previous literature, I expect individuals with OCD to have higher CBCL 

scores for obsessions and compulsions, as well as OCS and OCP derivative scales. 

Distribution analysis indicated that both the OCS and OCP constructs had OCD-

dependent stratification, especially with respect to broad vs. narrow grouping of OCD 
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(Figure 4-5). The bOCD group shows a slight right shift in both OCS and OCP scores, 

but overall, still a negative binomial-like distribution. Conversely, individuals with nOCD 

show a substantial right shift and bell-like distribution for both OCS and OCP, but more 

dramatically so for OCS. Logistic regression of OCS to OCD diagnosis status (either 

bnOCD or nOCD) shows higher odds of OCD given nOCD vs. bnOCD (ORbnOCD = 1.71,  

pbnOCD ≪ 0.001, ORnOCD = 1.81, pnOCD ≪ 0.001). Furthermore, OCS had a higher 

predicted OR compared to OCP (ORbnOCD = 1.29, pbnOCD ≪ 0.001, ORnOCD = 1.32, pnOCD 

≪ 0.001). Visual representation of these associations is shown in Figure 4-6 and Table 

4-3. All associations were statistically significant at p ≪ 0.001. 

Association Between CBCL and OCD is Primarily Driven by Compulsions  

Further analysis of the CBCL OCD constructs indicates that compulsions are the 

main driver of association between OCS and OCD (Figure 4-6, Figure 4-7, Table 4-3). 

However, compulsions did not differentiate as well between nOCD and bnOCD as 

obsessions did (Figure 4-6, Figure 4-7, Table 4-3). Association between compulsions 

and nOCD vs. bnOCD was high (ORbnOCD = 3.12, pbnOCD ≪ 0.001, ORnOCD = 3.16, pnOCD 

≪ 0.001), but not very different and had overlapping 95% confidence intervals. 

Conversely, the association between obsessions and nOCD vs. bnOCD was smaller 

(ORbnOCD = 1.85, pbnOCD ≪ 0.001, ORnOCD = 2.14, pnOCD ≪ 0.001), but the estimates 

were different and had non-overlapping 95% confidence interval.  

TD in the ABCD Study Follow Expected Prevalence Patterns  

The broad and narrow TD prevalence was estimated at 6.59%, whereas the 

narrow prevalence of TD was estimated at 1.51%. Epidemiological studies put TD 

prevalence rate for TD at about 0.80% (Scharf et al., 2012). Sex ratios were also more 
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pronounced in TD, with bnTD being overrepresented in males at 2:1 ratio (7.20% vs. 

3.28% for males and females, respectively) and nTD being overrepresented in males at 

about 3:1 ratio (2.37% vs. 0.82% for males and females, respectively). This sex ratio 

also mimics that reported in literature (2:1 to 4:1, APA, 2013).  

CBCL Constructs Show TD-Dependent Stratification 

Visual inspection of CBCL constructs with respect to TD has also shown 

stratification. This is expected for couple of reasons: high rates of comorbid OCD 

among individuals with TD and potential confusion of tics for compulsions in parents. 

Both OCS and OCP vary with respect to broad vs. narrow TD (Figure 4-8). This 

association seems to be primarily driven by compulsions score (Figure 4-9). Logistic 

regression has shown a substantial magnitude and strength between all CBCL 

constructs and TD, regardless of bnTD vs. nTD (Table 4-4, Figure 4-10).  

Discussion 

In this chapter, I outline the phenotypic exploration of OCD and related 

phenotypes, including comorbidity analysis and exploration of self-report symptom data 

available in the ABCD Study. The results indicate that when the data are taken at face 

value, the ABCD cohort shows a pervasive overdiagnosis of psychiatric disorders, 

which was expected given the study design. As previously mentioned, Townsend et al. 

(2019) show low clinician-parent positive agreement at 26%, with parents being prone 

to over-endorsing OCD. This is reflected in the prevalence of OCD being vastly more 

prevalent in ABCD Study than the epidemiologically established rates (pbnOCD = 0.1335, 

prefOCD = 0.0230), or about 5.8 times more prevalent (Table 4-2, Figure 4-3). The same 

was true of TD in the study which about 8.2 time more prevalent (pbnTD = 0.0659, prefTD = 
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0.0080); note that Townsend et al. (2019) did not assess tic disorders in their study. 

Thus, a closer inspection of psychiatric phenotypes in the ABCD Study was necessary. 

Based on the similar principle reported by Sordo Vieira et al. (2022), longitudinal 

consistency was deemed a crucial component to improving confidence of diagnosis. I 

defined narrow OCD diagnosis by only classifying those individuals who endorsed OCD 

on most of the available assessment timepoints and used a similar approach for other 

psychiatric diagnoses as a test of this method in this sample.  As a result, the 

prevalence of otherwise over-endorsed disorders was reduced, and for the two primary 

disorders of interest, the reduction resulted in prevalence rates that were much closer to 

the previously reported rates (pnOCD = 0.0260, pnTD = 0.0151). This was true across the 

board, except for a few disorders which had lower-than-expected prevalences, which 

can be attributable to age of onset for these disorders being later in adolescence.  

Comorbidity analysis has shown that bnOCD and nOCD have substantially 

different comorbidity profiles (Figure 4-4). Specifically, the rate of bnOCD among 

individuals with bnTD was 35.04%, and the rate of nOCD among individuals with nTD 

was 46.81%, indicating higher risk of OCD among individuals with TD than the reverse, 

which is in line with the previous literature, such as the 62.78% rate of comorbid OCD 

among individuals with TD reported by Claudio-Campos et al. (2021). Curiously, 

constraining diagnosis to narrow when OCD is primary reduced the rates of comorbid 

TD, with rates of bnTD among bnOCD cases being 18.16% and rates of nTD among 

nOCD cases being 5.55%. One reason this might be the case is likely that only 52.63% 

of participants have reached the stage of third annual follow-up at which TD was 

assessed (Figure 4-1). Another explanation is that broad and narrow diagnoses have 
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shown globally higher rates of comorbidities. Ultimately, nTD might be too restrictive 

diagnosis construct as it requires the presence of both motor and phonic tics, thus 

acting as a proxy for TS more so than TD.  

Further exploration of psychiatric symptoms reported in the CBCL questionnaire 

found that more severe symptoms related to OCD stratified by the OCD diagnosis 

construct. Specifically, distributions of OCS and OCP were substantially more right 

shifted among nOCD cases than bOCD cases (Figure 4-5). Further analysis has shown 

this effect to be primarily driven by compulsions, with obsessions being a differentiating 

factor (Figure 4-6, Figure 4-7, Table 4-3), i.e., compulsions drive any diagnosis of OCD 

whereas obsessions drive narrow diagnosis of OCD specifically. One reason why 

compulsions might be driving the differentiation between bOCD or nOCD from OCD 

negative individuals could be that compulsive symptoms are usually behaviors and are 

thus more easily noticed and remembered. Conversely, one reason why obsessions 

might be contributing to differentiation between bOCD and nOCD individuals could be 

the fact that nOCD individuals might experience more severe obsessive symptoms that 

would be more easily noticed by the parents. 

Analysis of TD in the ABCD study also indicated that comorbidities and other 

characteristics follow previously reported clinical TD patterns. In addition to TD-OCD 

comorbidity patterns replicating those reported in the literature, sex ratio analysis has 

shown TD to follow similar patterns to those reported in the literature, with males being 

predominantly affected, especially in nTD, with male-to-female ratio of 3:1. Additional 

analysis of TD in this sample has shown, similar to OCD, TD-dependent stratification of 

psychiatric symptoms (Figure 4-8, Figure 4-9). Logistic regression of CBCL constructs 
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to TD diagnosis status has confirmed these observations (Table 4-4, Figure 4-10). In 

other words, broad TD cases have diluted overall relationship between TD status and 

the four examined CBCL constructs. 

In conclusion, the high rate of OCD in the ABCD Study is likely due to phenotype 

misclassification. Revising the phenotype definition to a more conservative, longitudinal 

constructs reduces the observed diagnosis rates of OCD to much closer to those 

reported in the literature. This is likely due to the removal of some individuals who would 

be considered to have obsessive compulsive symptoms, but not meet diagnostic criteria 

if assessed by clinicians. Thus, bnOCD construct could be considered a proxy for either 

obsessive-compulsive symptoms across a variety of diagnoses or subclinical symptom 

states or of general neurodevelopmental psychopathology, whereas nOCD can be 

considered a proxy for clinical OCD diagnosis. These will be further explored in genetic 

studies in Chapter 5.  
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Table 4-1. KSADS-5 module administration schedule. 

 KSADS-5 Modules P0 P1 P2 P3 Y0 Y1 Y2 Y3 

M1. Depressive disorders a X  X X X  X  

M2. Bipolar disorders X  X  X  X  

M3. Disruptive mood regulation disorders a X    X    

M4. Psychosis X X X X     

M5. Panic disorders X  X      

M6. Agoraphobia a X  X      

M7. Separation anxiety disorder X  X      

M8. Social anxiety disorder X  X  X  X  

M9. Specific phobia X  X      

M10. Generalized anxiety disorder X  X  X  X  

M11. Obsessive-compulsive disorder X  X      

M12. Enuresis and encopresis         

M13. Eating disorders a X X X X X  X  

M14. Attention deficit / hyperactivity disorder a X  X X     

M15. Oppositional defiant disorder X X X      

M16. Conduct disorder X X X X X  X  

M17. Tic disorders    X     

M18. Autism spectrum disorder a X  X      

M19. Alcohol use disorder X  X X    X 

M20. Drug use disorder X  X X    X 

M21. Post-traumatic stress disorder X  X      

M22. Sleep problems X  X  X  X  

M23. Suicidaliity X  X  X X X X 

M24. Homicidality X  X  X X X  

M25. Selective mutism X  X      

P: parents, Y: youth, 0: baseline, 1-3: follow-ups 1-3. a Data have been partially or completely removed 
from the dataset by ABCD study administrators due to a programming error in KSADS-5 data processing. 
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Figure 4-1. ABCD study timeline with number of KSADS-5 data points. So far, data 

are available for the first 3 assessment points for most participants and for the 
4th assessment point for about half of participants, with 7-8 time points 
remaining in the study. 

 
Figure 4-2. Decision diagram for TD diagnosis. Only individuals who have a history of 

both motor and vocal tics are categorized as having TD.  
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Figure 4-3. Prevalence rates of psychiatric disorders in the ABCD Study. a) if broad 

and narrow and b) if narrow only. Reference prevalence rates: a Merikangas 
et al. (2010), b Zohar (1999), c Scharf et al. (2012), d Kjeldbjerg & Clausen 
(2021), and e Lewien et al. (2021).  
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Table 4-2. Tabulated prevalence rates of psychiatric disorders in the ABCD Study. 

Disorder Broad + Narrow Narrow Reference 

BED 2.52 0.19 a 1.32 

BPD 10.81 1.25 a 2.90 

BPD1 9.02 0.77 - 

BPD2 3.42 0.20 - 

CD 7.20 0.60 a 6.80 

EFD 2.70 0.20 a 2.70 

GAD 8.18 1.57 a 2.20 

OCD 13.35 2.60 b 2.30 

ODD 24.43 11.77 a 12.60 

PD 0.66 0.08 a 2.30 

PTSD 3.20 0.57 a 5.00 

SCZ 6.99 0.20 - 

SP 35.88 10.16 a 19.30 

SPD 32.28 9.21 e 22.60 

SeAD 11.33 2.48 a 7.60 

SoAD 8.35 1.91 a 9.10 

TD 6.59 1.51 c 0.80 
a Merikangas et al. (2010) 
b Zohar (1999) 
c Scharf et al. (2012) 
d Kjeldbjerg & Clausen (2021) 
e Lewien et al. (2021)  
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Figure 4-4. Comorbidity analysis of OCD in ABCD Study. Broad and narrow 

definitions (top) and narrow definitions only (bottom). Red bars represent 
comorbidities when OCD is a primary diagnosis, blue bars represent 
comorbidities when OCD is a secondary diagnosis.  
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Figure 4-5. Histograms of OCS and OCP values stratified by OCD diagnosis. OCS 

(top) and OCP (bottom) both show OCD diagnosis related skew.  
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Figure 4-6. Graphical representation of logistic regressions of CBCL constructs on 

OCD diagnoses. Dashed line indicates no risk (OR = 1). All associations were 
statistically significant at p ≪ 0.001.  
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Table 4-3. Summary statistics of logistic regressions of CBCL constructs on OCD 
diagnoses. 

OCD Diagnosis CBCL Construct OR Lower 95% CI Upper 95% CI P 

Broad + narrow OCS 1.71 1.66 1.76 ≪ 0.001 

Narrow OCS 1.81 1.73 1.89 ≪ 0.001 

Broad + narrow OCP 1.30 1.28 1.32 ≪ 0.001 

Narrow OCP 1.32 1.30 1.35 ≪ 0.001 

Broad + narrow Compulsions 3.12 2.90 3.37 ≪ 0.001 

Narrow Compulsions 3.16 2.90 3.46 ≪ 0.001 

Broad + narrow Obsessions 1.85 1.78 1.92 ≪ 0.001 

Narrow Obsessions 2.14 2.01 2.28 ≪ 0.001 
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Figure 4-7. Histograms of compulsions and obsessions values stratified by OCD 

diagnosis. Compulsions (top) and obsessions (bottom) both show OCD 
diagnosis related skew.  
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Figure 4-8. Histograms of OCS and OCP values stratified by TD diagnosis. OCS (top) 

and OCP (bottom) both show TD diagnosis related skew.  
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Figure 4-9. Histograms of compulsions and obsessions values stratified by TD 

diagnosis. Compulsions (top) and obsessions (bottom) both show TD 
diagnosis related skew.  
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Table 4-4. Summary statistics of logistic regressions of CBCL constructs on TD 
diagnoses. 

TD Diagnosis CBCL Construct OR Lower 95% CI Upper 95% CI P 

Broad + narrow OCS 1.38 1.33 1.45 ≪ 0.001 

Narrow OCS 1.44 1.35 1.55 ≪ 0.001 

Broad + narrow OCP 1.16 1.13 1.18 ≪ 0.001 

Narrow OCP 1.17 1.13 1.21 ≪ 0.001 

Broad + narrow Compulsions 1.96 1.77 2.16 ≪ 0.001 

Narrow Compulsions 2.07 1.80 2.37 ≪ 0.001 

Broad + narrow Obsessions 1.49 1.40 1.58 ≪ 0.001 

Narrow Obsessions 1.61 1.44 1.80 ≪ 0.001 
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Figure 4-10. Graphical representation of logistic regressions of CBCL constructs on TD 

diagnoses. Dashed line indicates no risk (OR = 1). All associations were 
statistically significant at p ≪ 0.001 
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CHAPTER 5 
GENETIC ARCHITECTURE OF OCRD PHENOTYPES IN ABCD STUDY 

Background 

As discussed in Chapters 2 and 3, there is substantial evidence of genetic effects 

underlying OCRD phenotypes, yet exact causative variants remain to be discovered. 

The main reasons for this include limited sample sizes, as well as complex and small 

genetic effect sizes. One way to overcome this limitation is by meta-analyzing numerous 

small studies. For that reason, it is beneficial to conduct GWAS of OCD in the ABCD 

sample despite a limited number of cases, as resulting summary statistics may 

contribute to a large collection of OCD GWAS studies to be meta-analyzed, such as is 

done in the Psychiatric Genomics Consortium (PGC). Another reason to conduct such 

studies in this sample with such expansive phenotyping is that it allows for in-depth 

analysis of the genetic architecture of OCD in this unique population sample of 

American children and adolescents. 

The ABCD study is a large scale, longitudinal brain development and child health 

study (n = 11,924), which, in addition to the phenotype data discussed in Chapter 4, 

also includes genotype data. In this chapter, I explore genetic variability in OCRD 

phenotypes in the ABCD sample, as well as cross-disorder genetic associations. This 

unique, population sample of children/adolescents has the potential to provide a 

valuable insight into pediatric OCD and other childhood onset psychiatric disorders. 

Methods 

Genotype Data 

Genotyping data were derived from Affymetrix NIDA (National Institute for Drugs 

and Addiction) SmokeScreen Array (Baurley et al, 2016). The smokescreen array 
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consists of 733,293 markers optimized for addiction research. DNA was obtained from 

whole blood and saliva. Genotyping data are provided as pre-processed PLINK files 

(.bim, .bed, .fam) for 11,099 individuals with 516,598 markers (Chang et al., 2015). All 

markers have already been referenced and oriented to the positive strand.  

Quality Control of Genotype Data 

Initial exploration of the ABCD cohort revealed 38 individuals with problematic 

sex (38 with sex missing in the phenotype file, with 1 of them also being genetically too 

ambiguous to call). Further diagnostics revealed that no psychiatric data were available 

for these 38 samples, thus they were removed from the further analysis. After this 

removal, no samples had issues with or discrepancies between reported phenotypic 

and genetic sex. 

Genotyping rate is defined either as the percent of successfully genotyped SNPs 

across an entire sample (Sample genotyping rate, GRS), or the percent of samples with 

successfully genotyped SNP (SNP genotyping rate, GRSNP). As a rule of thumb, GRS 

and GRSNP should both be > 0.98. However, the ABCD data had rates less than 0.98 

which is why additional cleaning was required (Figure 5-1). Closer examination of GRS 

and GRSNP in a batch-wise fashion has shown that 2 blood batches underperformed 

compared to 4 saliva batches (Figure 5-2), thus samples from these 2 whole blood 

batches were removed from further analysis (totaling 207 samples, 2 of which were 

nOCD). 

Subsequently, a serial filtering of genetic data based on genotyping rates was 

conducted in the following order to remove poorly genotyped SNPs and samples using 

a loop filtering iterating from i = 0.95 to i = 0.98 by 0.01, filtering SNPs with GRSNP ≥ i 

first, then followed by filtering samples with GRS ≥ i. After genotyping rate filtering, non-
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autosomal SNPs were removed from the dataset. The resulting dataset had 480,427 

markers and 10,763 individuals. 

Once poorly genotyped markers were removed, the dataset was LD-pruned to 

allow unbiased relationship estimations. Markers were pruned in PLINK using 

independent pairwise correlations in 200kb windows, sliding by 50 variants, and 

removing any markers with correlation of r2 ≥ 0.15. This reduced the dataset of LD-

pruned markers to 152,163 markers. Subsequently, identity by state (IBS) and identity 

by descent (IBD) calculations were used to identify and remove related individuals. 

IBS/IBD was significant if the π metric, a metric representing the proportion IBD, was 

equivalent to the sum of proportions of half of one-allele IBD and two-allele IBD 

(Equation 5-1). 

�̂� = �̂�[𝐼𝐵𝐷 = 2] ×
1

2
 �̂�[𝐼𝐵𝐷 = 1] 

(5-1) 

Samples were removed in the following preferential order: for samples with 

genetic relatedness, if the OCD phenotypes mismatched (i.e., one individual had an 

OCD phenotype and the other didn’t), then individuals without OCD were removed, if 

the OCD phenotypes matched, then individuals with lower genotyping rate were 

removed. After removal of related samples, 8,718 individuals with both OCD phenotype 

data and genotype data remained.  

In the non-pruned data set, Hardy-Weinberg equilibrium (HWE) exact test 

statistics were calculated for the remaining markers and individuals (Wigginton et al., 

2005). Because this sample was subjected to several GWASes, both case-control 

(ccGWAS) and quantitative (qGWAS) design, and using linear mixed models (LMM), 

samples were not filtered with respect to case status. Instead, a cutoff of pHWE ≤ 10-7 
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was used to remove markers in Hardy-Weinberg disequilibrium. Markers that strongly 

deviate from HWE are likely a result of genotyping errors. A total 413,359 markers 

remained after filtering. Distribution of pHWE is shown in Figure 5-5. While in ccGWAS 

studies SNPs that have pHWE ≤ 10-6 among cases and pHWE ≤ 10-10 among controls are 

usually the ones to be filtered out, due to multiple GWASes on multiple phenotypes in 

this study, I opted in for a cutoff that’s between those two, biased more towards cases 

(thus more conservative approach). Based on Figure 5-5, no apparent inflection point 

occurs at these ranges, indicating that this decision should not result in influential 

biasing SNPs being retained in the analysis. 

Heterozygosity, calculated as the inbreeding coefficient FHET, is an indicator of 

extent of inbreeding for an individual. Individuals may be extreme outliers for 

heterozygosity for reasons such inbreeding, genotyping issues, or sample cross-

contamination. Such individuals are traditionally removed from the analysis due to their 

potential for influencing associations. Individuals with FHET scores that were not within 4 

standard deviations of the mean were removed from the analysis. The overall 

distribution of heterozygosity in the ABCD sample is shown in Figure 5-6. After 

removing extreme outliers, 8,713 individuals remained in the study. 

Minor allele frequency, MAF, indicates the marker-wise population frequency of 

the less frequent allele. As GWAS analyses primarily focus on the contribution of 

common variants to polygenic risk, and markers with extremely low MAF are more 

susceptible to genotyping errors, their power to detect associations is limited – 

especially in smaller samples. The overall distribution of MAF with considered 
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thresholds (0.01, 0.02, 0.03, 0.04, 0.05) is shown in Figure 5-7. Based on these results, 

a cutoff of 0.05 was selected. After filtering, 294,757 markers were retained for analysis. 

Ultimately, insertion/deletion variants were also filtered out. The final dataset was 

composed of 8,713 individuals and 291,622 markers. This dataset was next used for 

phasing and imputation. 

Phasing and Imputation 

Phasing, or haplotype estimation, is a process utilizing positional Burrows-

Wheeler transform (PBWT) to choose a local subset of haplotypes using the 1000 

Genomes Project phase 3 data (1kGPp3) as a reference panel, which are then resolved 

using Markov chain Monte Carlo (MCMC) algorithm (Marchini, 2019; The 1000 

Genomes Project Consortium, 2015). Phasing in this study was done using SHAPEIT4 

(Delaneau et. al, 2019). The reference panel was filtered to keep only bi-allelic SNPs, 

and MAF of at least 0.001 across all superpopulations (admixed American, African, East 

Asian, European, and South Asian). Parameters for phasing were: expected error rate 

in the phase sets of 0.0001; MCMC iteration configuration of 

10b,1p,1b,1p,1b,1p,1b,1p,10m (b: burn-in iteration used for haplotype sampling, p: 

pruning iteration used to sample haplotype and trim unlikely paths in the genotype 

graphs using transition probabilities, m: main iteration used to sample new haplotypes 

storing average transition probabilities – to be used in final iteration stage to produce 

final estimates); PBWT depth of 8. 

Genotype imputation is a process where phased genotypes are used in 

conjunction with reference haplotypes to estimate values of missing genotypes of non-

genotyped loci (Marchini, 2019). Imputation increases the number of testable SNPs in 

association studies; thus, genotype imputation increases power and resolution needed 
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to better approximate phenotype-associated loci and facilitate fine-mapping of causal 

variants. Imputation also improves the quality of downstream meta-analyses as 

overlapping SNPs are necessary to jointly analyze multiple GWASes (de Bakker et al., 

2008). The same reference data used for phasing were also used for imputation. To 

facilitate faster and more accurate imputation, the genome was split into 5Mb chunks 

flanked by a 250kB buffer. Additionally, genetic data were transformed into IMP5 files to 

speed up imputation. Imputation itself was done using IMPUTE5 (Rubinacci et al, 2020). 

IMPUTE5 relies on PBWT and forward-backward HMM algorithms to impute the 

genotypes. Parameters for imputation were: PBWT depth of 8. 

Resulting imputed genome chunks were merged, then filtered to keep only the 

imputed SNPs with INFO > 0.8 and MAF > 0.01. The INFO score is a measure of the 

relative statistical information about the SNP allele frequency from the imputed data, 

and as such, it is a measure of imputation quality (Marchini & Howie, 2010). After 

phasing, imputation, and filtering, the final number of SNPs was 5,322,421. 

Global Ancestry 

Global ancestry estimation was estimated with FRAPOSA software, using bias-

adjusted principal component analysis (PCA), which calculates the asymptotic 

shrinkage bias from simple projections and then adjusts for bias which is useful to 

account for any residual relatedness in the samples (Zhang et al., 2020; Dey & Lee, 

2019). The 1kGPp3 data were used as reference. Parameters for ancestry PCA were: 

method set to online adjusted projection; number of principal components of 20. 

Samples were classified by superpopulation, keeping only individuals classified as 

admixed Americans (AMR), Africans (AFR), or Europeans (EUR). 
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Figures 5-8 and 5-9 show the population and superpopulation stratification of 

ABCD study in controls, bOCD, and nOCD, with respect to the 1kGPp3 reference set. 

The first two principal components explain 65.71% of variance and show decent, yet 

incomplete separation of super populations, indicating additional principal components 

needing to be considered. Figures 5-10 and 5-11 show the biplots and density plots of 

the first 4 principal components, explaining 78.73% of the variance. These figures show 

decent separation for African and European participants, yet not so much for admixed 

American participants. This could be potentially concerning in downstream analyses of 

admixed Americans. Final cohort sample sizes were: 1,633 AMR, 1,695 AFR, and 5,164 

EUR. 

Covariate PCA 

Principal components are often used as covariates in GWAS associations to 

account for population structure. While global ancestry information was used to create 

ancestral cohorts for independent GWASes, covariates needed to be formed without 

projecting sample data onto the reference panel to preserve sample-specific information 

such as allele frequencies and LD-structure. Since the Smokescreen array used to 

genotype ABCD samples contains a large number of custom SNPs selected for 

smoking and addiction relevant loci which are mostly European-biased, principal 

components and genomic relationship matrix construction only LD-pruned backbone 

markers were used. Twenty principal components were derived using PLINK for 

covariates in GWAS association tests. 

Genomic Relationship Matrix 

The genomic relationship matrix (GRM) is a structured matrix summarizing 

kinship between samples that is commonly used in linear mixed model GWASes. First, 
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GWASTools R package was used to convert available genetic data into GDS format 

(Gogarten et al., 2012). Subsequently, mutually unrelated individuals were identified 

using pairwise measures of genetic relatedness, or kinship coefficients (Manichaikul et 

al., 2010). The unrelated individuals were then used to construct ancestry principal 

components followed by projection of related individuals onto the derived principal 

components (Conomos et al., 2015), this projection is graphically represented in the 

principal component biplots in Figure 5-12. This was followed by construction of 

ancestry-aware genomic relationship matrices to provide accurate relatedness 

estimates due only to recent family structure (Conomos et al., 2016). Figure 5-13 

demonstrates that this process successfully accounts for any ancestry substructure 

within the relationship matrix. The resulting GRM is used as a random effects covariate 

in GWAS linear mixed model association tests. 

Phenotypes 

Phenotypes were constructed for OCD (nOCD and bnOCD) and OCS (CBCL 

OCS and CBCL OCP) according to the methods described in Chapter 4. Sample IDs 

were annotated with the OCD and OCS phenotype information, the first 20 covariate 

principal components, sex information, and batch information and saved for future use 

in association analyses. 

Case-Control Matching 

Case-control imbalanced data has been shown to negatively affect GWAS by 

causing large numbers of spurious associations when the number of controls is 

considerably greater than the number of cases (Zhou et al., 2018). To circumvent this 

issue, for ccGWAS analyses, samples can be clustered by sex and ancestry similarity to 

get a best-matching subset of controls from the study and reduce the case-control 
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imbalance. For each ancestry cohort, participants were clustered in PLINK using IBS 

and sex information and controls chosen for GWAS in a 4:1 case matching ratio 

(control: case). 

Association Testing 

GWAS association testing was done using linear mixed modeling in GENESIS 

(Gogarten et al., 2019). Null models were first fitted using a subset of individuals-based 

ancestry and case-control (if ccGWAS) clusters. In the null models, I included GRM as 

random effects covariates, and sex, batch, and the first 20 principal components as 

fixed effect covariates – thus allowing to effectively control for population structure and 

relatedness (Chen et al., 2016). In the case of ccGWAS for OCD, the link function used 

was binomial, whereas for quantitative (q) qGWAS for OCS the link function used was 

Poisson. The convergence threshold for the average information REML parameter was 

set to 0.0001. The maximum number of iterations allowed to reach this convergence 

was set to 100. Variance component terms that converged to 0 were removed from the 

model. Due to the large number of SNPs tested, association testing was carried out in 

5000-SNP blocks. 

ccGWAS was performed for both nOCD and bnOCD. For each phenotype, 

separate ccGWASes were performed for AMR, AFR, EUR, and the combined sample 

(to be referred to as MEGA). qGWASes were performed for OCS, for AMR, AFR, EUR, 

and MEGA. Table 5-1 summarizes samples for each GWAS association, total sample 

sizes, including number of cases and controls for ccGWAS, and percent of the sample 

that is genetically and assigned at birth female. 

I report Manhattan and quantile-quantile (QQ) plots for each GWAS, as well as 

the genomic inflation factor, λGC. λGC is a commonly used method of checking for 
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systematic biases in GWAS – where λGC > 1 indicates presence of a systematic bias 

that might need to be addressed. λGC can be mathematically defined according to the 

Equation 5-2. 

𝜆𝐺𝐶 =
Med(𝜒𝐺𝑊𝐴𝑆

2 )

𝜒𝑑𝑓=1,   𝛼=0.05
2  

(5-2) 

Gene Annotation and Ontology Analysis 

Gene annotation was done using GRCh37 BioMart web server at 

www.grch37.ensembl.org (Smedley et al., 2009). Briefly, SNPs were filtered to keep 

only those associated with the trait at p < 10-5 for a given GWAS. Subsequently, the list 

of SNPs was submitted to the aforementioned web server and a list of gene names was 

obtained for further analysis. 

GTEx annotation was done using the GTEx web server at www.gtexportal.org 

(Lonsdale et al., 2013). All genes of interest were looked up on the portal, tissue 

expression data was saved after filtering for tissues of interest (central and peripheral 

nervous system tissues, cardiac, smooth, and skeletal muscle tissues, and pituitary 

gland) in the form of a violin plot. 

GO analysis was conducted using the GO web server at www.geneontology.org 

(Ashburner et al., 2000; Gene Ontology Consortium et al., 2021; Mi e al., 2018). Briefly, 

a list of gene names of interest is supplied and analyzed. GO terms with p<0.05, after 

FDR are presented. For the GO analysis discussed in Chapter 2, a list of genes from 

high-throughput genome-wide studies was collected from previous studies and jointly 

analyzed. For the GO analysis discussed in Chapter 5 GWAS analyses, a list of genes 

overlapping markers associated with a given phenotype p < 10-5 was collected and 

analyzed per each individual GWAS.  
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Polygenic Risk Score Analysis 

The polygenic risk score (PRS) is a commonly utilized tool to measure disease 

risk due to genetic factors and can be defined as the total genetic burden of the disease 

due to common variants (Meisner & Chatterjee, 2019). From the Equation 1-2, PRS is 

defined as the sum of products of risk alleles at numerous loci with the weights derived 

from GWAS summary statistics reports at those loci (Choi et al., 2020). Thus, PRS 

predictions require 2 independent samples: a discovery sample from which the weights 

can be determined, and a target sample for testing the calculated PRS association with 

targeted phenotype. While requirement of two independent samples makes the test 

demanding, the two phenotypes tested do not need to be the same. Thus, testing PRS 

models derived from one phenotype can be used to examine another phenotype, 

effectively probing the extent of shared genetic architecture between the two 

phenotypes. There are several PRS tests run in this study. Namely, I used weights from 

the nOCD ccGWAS to test the PRS models in independent bOCD and OCS samples, 

weights from the OCS qGWAS to test the PRS models in the independent nOCD 

sample, and finally, weights derived from publicly available PGC GWAS summary 

statistics to test PRS models in nOCD in the ABCD sample. Table 5-2 summarizes 

these experiments, indicating the combinations of discovery samples with the target 

samples. 

PRS testing was done using the PRS-PCA approach (Coombes et al., 2020). 

Briefly, for each discovery sample of interest, summary statistics files are obtained. 

Subsequently, ORs are transformed into beta estimates by taking their natural 

logarithms for all summary statistics files obtained from ccGWASes. Subsequently, data 

are clumped in PLINK, with following parameters: clump p-value threshold of 1, LD 
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threshold for clumping of 0.2, and physical distance threshold for clumping of 500kb. 

The resulting valid SNPs are extracted and used to generate PRS. PRS are generated 

using PLINK for following p-value ranges: 0-0.001, 0-0.01, 0-0.05, 0-0.1, 0-0.2, 0-0.3, 0-

0.4, 0-0.5, 0-0.75, and 0-1. Due to sample size restrictions (at least 100 cases), the 

PGC PRS analyses were limited to EUR and MEGA cohorts, and other PRS analyses 

where AMR and AFR cohorts are included should be interpreted with caution. For each 

cohort and trait of interest, PRS for all thresholds are scaled, followed by PCA.  

Loadings are calculated and used to derive PRS-PCA scores for each individual 

(here I only focus on PRS-PCA from the loadings of principal components 1 and 2). 

Subsequently, for each target trait (nOCD, bOCD, bnOCD, or OCS) and ancestral 

cohort (AMR, AFR, EUR, or MEGA), and discovery sample (nOCD, bOCD, OCS from 

AMR, AFR, EUR, or MEGA, and PGC studies), Nagelkerke’s pseudo R2, RN
2 was 

calculated. I focused on only OCS as its relationship with OCD was stronger than that of 

OCP. To calculate RN
2, I first fit a null model regressing target trait onto sex, the first 20 

principal components for population stratification control, and batch. Then I fit a full 

model including all covariates from above adding PRS-PCA1 and PRS-PCA2 scores. 

Then, I used the likelihoods from these two models to derive RN
2. For each scenario, 

OR, SEOR, and p for PRS are taken from the full model for the PRS-PCA term. p values 

are then FDR corrected. The repeated subsampling analysis is done by deriving RN
2 for 

a subset of randomly drawn 120 cases and 600 controls, 500 times. If the target trait is 

coming from binomial distribution (nOCD, bOCD, bnOCD) then the Gaussian regression 

is used, if the target trait is coming from Poisson distribution (OCS), then the Poisson 
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regression is used. RN
2 can be mathematically represented according to the Equation 5-

3. 

𝑅𝑁
2 =

1 − (
𝐿(𝑀𝑁𝑈𝐿𝐿)
𝐿(𝑀𝐹𝑈𝐿𝐿)

)
2 𝑁⁄

1 − 𝐿(𝑀𝑁𝑈𝐿𝐿)2 𝑁⁄
 (5-3) 

PGC summary statistics were obtained from the PGC web site at 

www.med.unc.edu/pgc/download-results and include: ADHD (Demontis et al., 2019), 

AN (Watson et al., 2019), a compound anxiety disorder ccGWAS (ANX; Otowa et al., 

2016), ASD (Grove et al., 2019), BPD (Mullins et al., 2021), a cross disorder / 

psychopathology phenotype consisting of 11 psychiatric disorders, including OCD and 

TS (Lee et al., 2019), MDD (Howard et al., 2019), OCD (IOCDF-GC & OCGAS, 2017), 

PD (Forstner et al., 2021), PTSD (Nievergelt et al., 2019), SCZ (Pardiñas et al., 2018), 

and TS (Yu et al., 2019).  

Heritability and Genetic Correlations 

For within-sample analyses, heritabilites were estimated using Genome-wide 

Complex Trait Analysis (GCTA) and individual-level data (Yang et al., 2011). Using the 

same package, per-ancestry genetic correlations between bnOCD and OCS were also 

estimated (Lee et al., 2012). Analyses were limited to the EUR and MEGA cohorts due 

to sample size constraints.  

For inter-sample analyses, heritability was estimated from MEGA and EUR 

bnOCD, MEGA and EUR OCS, and PGC GWASes summary statistics using LDSC 

(Bulik-Sullivan, Loh, et al., 2015). The same software was used to calculate the 

heritabilites and genetic correlations between EUR bnOCD and OCS, MEGA bnOCD 

and OCS, and PGC GWASes (Bulik-Sullivan, Finucane, et al., 2015). 
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Admixture Analysis 

To assess unbiased estimation of ancestry patterns, the software ADMIXTURE 

was used to run analysis on LD-independent (r2 < 0.1) loci for ancestry composition 

(Alexander et al., 2009), assuming 6 independent contributing populations (this being a 

numeric parameter passed into the software instructing the number of clusters to 

consider). 

Results 

nOCD ccGWAS 

Across all ancestry cohorts (AMR, AFR, EUR, MEGA) examined, no genome-

wide significant associations were found to associate with the narrow definition of OCD. 

Table 5-3 summarizes λGC for all GWASes, and both the whole SNP set and genotyped-

only SNPset. Figure 5-14 summarizes Manhattan plots for the nOCD GWASes for all 

ancestry cohorts; no immediately apparent patterns that are common across ancestry 

cohorts can be noticed. QQ plots, Figure 5-15, for the nOCD GWASes show p-value 

distributions that follow expectations, without extreme biases or deviations. 

Only one locus associated with nOCD at p < 10-5 in 2 different ancestral cohorts 

(Table 5-4, Figure 5-20), namely rs76846589 from AMR (chr4:180,653,660, p = 5.77 × 

10-6) in a 130kb proximity to rs55747917 from AFR (chr4:180,784,550, p = 2.51 × 10-6). 

Both SNPs are located in a relatively conserved intergenic region of the chromosome 4, 

yet neither SNP is known to be associated with any significant clinical or non-clinical 

phenotype in previous studies. 

GO analysis of genes overlapped by markers with GWAS p < 10-5 identified 

neuron to neuron synapse cellular components as significantly enriched at pFDR = 4.99 × 

10-2 in the AMR cohort, however that was the only significant finding across all 4 



 

115 

GWASes on nOCD (Table 5-5). The contributing genes were ACTR2, MAGI2, and 

ALS2, all three of which are expressed in the brain. 

bnOCD ccGWAS 

Across all ancestry cohorts (AMR, AFR, EUR, MEGA) examined, no genome-

wide significant associations were found to associate with the wide (bnOCD), broad 

(bOCD) or narrow (nOCD) definition of OCD. Table 5-3 summarizes λGC for all 

GWASes, and both the whole SNP set and genotyped-only SNPset. Figure 5-16 

summarizes Manhattan plots for the nOCD GWASes for all ancestry cohorts; no 

immediately apparent patterns that are common across ancestry cohorts can be 

noticed. QQ plots, Figure 5-17, for the nOCD GWASes show p distributions that follow 

expectations, without extreme biases or deviations. 

No loci associated with bnOCD at p < 10-5 were replicated in 2 independent 

ancestral cohorts. One locus, overlapping CDKAL1 gene on chromosome 6 was in the 

same p-value trench in EUR cohort, and then also in a larger MEGA cohort, however 

EUR individuals are all included in MEGA as well, so this is not valid replication of 

association as much as it is an association robust to sample expansion (Table 5-4, 

Figure 5-20). The strongest hits in these two loci were rs36045545 from EUR 

(chr6:20,649,111, p = 6.69 × 10-6), which is about 11kb downstream to rs13203361 from 

MEGA (chr6:20,661,021, p = 8.86 ×10-5). CDKAL1 transcripts can be detected in brain 

tissues, but no associations with neurodevelopmental or psychiatric disorders have 

been noted. GO analysis yielded no significant associations after controlling for FDR 

(Table 5-5). 
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OCS qGWAS 

Across all ancestry cohorts (AMR, AFR, EUR, MEGA) examined, no genome-

wide significant associations were found to associate with the OCS phenotype. Table 5-

3 summarizes λGC for all GWASes, including both the whole SNP set and genotyped-

only SNPset. Figure 5-18 summarizes Manhattan plots for the nOCD GWASes for all 

ancestry cohorts; no immediately apparent patterns that are common across ancestry 

cohorts can be noticed. QQ plots, Figure 5-19, for the nOCD GWASes show p-value 

distributions that follow expectations, without extreme biases or deviations. 

No loci associated with OCS at p < 10-5 were replicated in 2 independent 

ancestral cohorts. Two loci separated by about 545kb can be found in AFR and EUR 

cohorts, but they are separated by a region of high recombination rate, so this is unlikely 

to be a replication. One locus found in the EUR cohort remained in the p < 10-5 trench, 

with lowest p-values belonging to rs2418954 from EUR (chr10:108,892,622, p = 5.54 × 

10-6), which is about 14kb upstream to rs7089127 from MEGA (chr10:108,878,616, p = 

7.47 × 10-5). 

GO analysis of the AMR cohort resulted in enrichment of SNPs in the p < 10-5 

trench overlapping genes involved in the integral component of lumenal side of 

endoplasmic reticulum (ER) membrane (pFDR = 1.29 × 10-4) ER to Golgi transport 

vesicle membrane (pFDR = 5.39 × 10-4), clathrin-coated endocytic vesicle membrane 

(pFDR = 6.54 × 10-4) trans-Golgi network membrane (pFDR = 1.28 × 10-3), and lysosomal 

membrane (pFDR = 3.54 × 10-2) cellular compartment ontologies. Other cohorts resulted 

in no significant associations. 
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Cross-OCRD Trait GWAS 

There were overall low rates of either within-disorder cross-ancestry (Table 5-4, 

Figure 5-20) or within-ancestry cross-disorder (Table 5-4, Figure 5-21) overlap in loci 

with GWAS p < 10-5. One locus on chromosome 16 was found in this trench in AFR 

nOCD (rs887523, chr16:5,705,280, p = 3.25 × 10-6), AFR bnOCD (rs62016433, 

chr16:5,525,579, p = 3.19 × 10-6), and AMR OCS (rs12325273, chr16:7,253,286, p = 

2.54 × 10-6). In all three GWASes, the SNP clusters overlapped with the RBFOX1 gene 

(Figure 5-22). RBFOX1 is ubiquitously expressed across the central nervous system 

and skeletal, but not cardiac and smooth, muscle (Figure 5-23). RBFOX1 is an 

important gene implicated in numerous neurological and psychiatric conditions, 

including spinocerebellar ataxia, autism, developmental coordination disorder, and 

epilepsy (GeneCards, n.d.). 

OCRD Trait PRS Analysis 

Within-sample cross-trait PRS analysis yielded no statistically significant 

predictions, regardless of the discovery or target phenotype or ancestry (Figure 5-24). 

Among the nOCD discovery analyses, the strongest associations in terms of amount of 

variance explained, were seen when using PRS generated from nOCD AFR GWAS to 

predict nOCD AMR case status, at RN
2 = 0.0365, pFDR = 0.7715. Other noteworthy 

associations were between the nOCD EUR discovery, and nOCD AMR (RN
2 = 0.0311, 

pFDR = 0.8252) and nOCD AFR RN
2 = 0.0280, pFDR = 0.7715) target samples. These 

associations were also the strongest associations overall. nOCD discovery performed 

better than bnOCD discovery, despite their larger sample sizes (Table 5-1). 

Using the OCS trait as the discovery sample also yielded no statistically 

significant associations. The strongest associations in terms of RN
2 were from the qOCS 
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AMR discovery with nOCD AFR (RN
2 = 0.0295, pFDR = 0.7715) and nOCD AMR as the 

target samples (RN
2 = 0.0191, pFDR = 0.9178), and from the qOCS EUR discovery with 

nOCD AFR target (RN
2 = 0.0266, pFDR = 0.8307).  

PGC PRS Analysis 

PGC PRS analysis of cross-disorder diagnoses yielded no significant 

associations between PGC GWAS summary statistics PRS scores and OCD status 

(either nOCD, bOCD, or bnOCD) in the ABCD EUR and META cohorts after controlling 

for multiple testing. Overall, PCG PRS scores were better at predicting nOCD than 

bOCD or bnOCD, particularly in the EUR cohort. This effect was particularly 

pronounced in the ADHD, AN, ASD, BPD, MDD, OCD, PD, and SCZ derived PRS 

scores (Figure 5-25, 5-26). The opposite was true of ANX, cross-disorder / 

psychopathology, PTSD, and TS derived PRS scores (Figure 5-25, 5-26).  

Nominally significant associations included MDD-derived PRS predicting into 

MEGA nOCD (RN
2 = 0.0084, pNOMINAL = 0.0292), bOCD (RN

2 = 0.0031, pNOMINAL = 

0.0056), bnOCD (RN
2 = 0.0031, pNOMINAL = 0.0014) and EUR bOCD (RN

2 = 0.0038, 

pNOMINAL = 0.0211), bnOCD (RN
2 = 0.0042, pNOMINAL = 0.0043); SCZ-derived PRS 

predicting into EUR bOCD (RN
2 = 0.0038, pNOMINAL = 0.0205), bnOCD (RN

2 = 0.0043, 

pNOMINAL = 0.0042); AN-derived PRS predicting into MEGA bOCD (RN
2 = 0.0021, 

pNOMINAL = 0.0292), bnOCD (RN
2 = 0.0019, pNOMINAL = 0.0169) and EUR bOCD (RN

2 = 

0.0040, pNOMINAL = 0.0170), bnOCD (RN
2 = 0.0037, pNOMINAL = 0.0088); OCD-derived 

PRS predicting into MEGA bOCD (RN
2 = 0.0025, pNOMINAL = 0.0141), bnOCD (RN

2 = 

0.0020, pNOMINAL = 0.0146); PTSD-derived PRS predicting into MEGA bOCD (RN
2 = 

0.0025, pNOMINAL = 0.0152), bnOCD (RN
2 = 0.0015, pNOMINAL = 0.0436); ANX-derived 

PRS predicting into MEGA bOCD (RN
2 = 0.0023, pNOMINAL = 0.0190), bnOCD (RN

2 = 
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0.0019, pNOMINAL = 0.0195); TS-derived PRS predicting into MEGA bOCD (RN
2 = 0.0023, 

pNOMINAL = 0.0221), bnOCD (RN
2 = 0.0018, pNOMINAL = 0.0212); and cross-disorder / 

psychopathology derived PRS predicting into EUR  bOCD (RN
2 = 0.0034, pNOMINAL = 

0.0301), bnOCD (RN
2 = 0.0025, pNOMINAL = 0.0400). However, none of these 

associations were significant after multiple testing corrections, controlling for the FDR. 

Repeated undersampling analysis shows large variability in RN
2 with respect to 

target sample sizes (Figure 5-26). The higher RN
2 in nOCD compared to bOCD and 

bnOCD remains among ASD, MDD, and SCZ - indicating effects of discovery sample 

sizes on PRS modeling. 

Within Sample Heritability and Genetic Correlations 

REML analysis is reported in Table 5-6. Briefly, only the EUR OCS trait among 

bnOCD individuals was successfully calculated at hSNP
2 = 0.00153 and SESNP = 0.04872 

on the liability scale. Due to low sample size (especially cases) and sample 

heterogeneity, hSNP
2 could not be calculated for OCD traits. Hence, rg could also not be 

calculated in this sample. 

PGC Heritability and Genetic Correlations 

LDSC heritability estimates for ABCD data returned negative heritabilites for all 

ABCD GWASes: EUR bnOCD and OCS, and MEGA bnOCD and OCS. As this 

heritability is out of bounds (minimum possible being 0), rg could also not be calculated 

in these analyses. 

Admixture Analysis 

Admixture analysis shows low level of non-European admixture in EUR cohort 

(Figure 5-27). Low-to-moderate levels of non-African admixture were present in AFR 
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cohort, primarily from Europeans. High levels of non-American admixture were present 

in the AMR cohort, primarily coming from Europeans then Africans. 

Discussion 

The ABCD Study is a longitudinal population study of American adolescents, 

representing one of the most diverse samples for genetic study to date – with nationally 

representative sample in terms of ancestry/ethnicity and sex. The ABCD Study also 

features comprehensive phenotyping data and neuroimaging data, in addition to the 

genetic data, making it a treasure trove for various genomic explorations.  

ccGWAS of both nOCD and bnOCD resulted in no genome-wide significant 

associations, which was expected to be the case given a) low sample sizes, b) 

phenotypically heterogenous samples in bnOCD, c) highly stratified sample, and d) high 

polygenicity and low penetrance of OCD variants. QC pipeline has successfully 

controlled for most confounders, as evident by the Manhattan plots, QQ plots, and non-

deviant inflation factors λGC (Table 5-3). GO analysis of genes overlapped by markers 

with pGWAS < 10-5 identified neuron to neuron synapse cellular components as 

significantly enriched at pFDR = 4.99 × 10-2 in AMR cohort (Table 5-5), with all three 

contributing genes (ACTR2, MAGI2, and ALS2) expressed in the brain. 

qGWAS of OCS also resulted in no genome-wide significant associations. This is 

likely due to underrepresentation of high OCS scores in the ABCD Study, i.e., extreme 

right-skew. Using Poisson linear mixed modelling helped control for this skew, but the 

number of individuals on the above-zero spectrum of OCS scores remains inadequate 

for a well-powered qGWAS. Across all GWASes, RBFOX1 repeatedly shows trending 

association with OCD and related symptoms, namely in AFR nOCD, AFR bnOCD, and 
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AMR OCD cohorts (Figure 5-22). RBFOX1 gene is an important RNA-processing factor 

with high expression in the brain (Figure 5-23). 

PRS analysis of OCRD traits within the ABCD Study has shown nOCD to be a 

better predictor of OCRD traits than bnOCD, despite its derivation from a smaller 

sample GWAS (Figure 5-24). This is likely due to lower phenotype heterogeneity and 

more accurate phenotype classification in nOCD cohorts. bnOCD was also 

outperformed by qOCS. While a few associations were present at nominal p-value, no 

statistically significant associations were present after controlling for FDR. 

PRS analysis of PGC traits shows PCG PRS scores to better predict nOCD than 

bOCD or bnOCD, particularly in the EUR cohort, especially when derived from ADHD, 

AN, ASD, BPD, MDD, OCD, PD, and SCZ summary statistics (Figure 5-25). Opposite 

was true of ANX, cross-disorder / psychopathology, PTSD, and TS derived PRS scores 

(Figure 5-25). These patterns indicate lower phenotype heterogeneity within the nOCD 

as compared to bOCD sample. Repeated under sampling somewhat accounts for these 

swings, indicating a need for larger sample sizes (Figure 5-26). 

Attempts at heritability estimation failed with estimated heritability being 

effectively 0 (in case of GCTA REML analysis of individual data) or negative i.e., out of 

bounds (in case of LDSC analysis of summary statistics). Subsequently no genetic 

correlations rg could be calculated. There are several possible reasons for these issues, 

namely 1) low sample size, 2) phenotype heterogeneity and misclassification, 3) high 

level of admixture and population stratification, and 4) use of LMM for association tests. 

LMM can increase power in genetic tests, especially when it comes to highly structured 

data in terms of relatedness and ancestry – such as ABCD Study. However, LMMs 
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have not been validated for the use in heritability and genetic correlation estimates. A 

potential work-around is to run a simple linear regression in addition to LMM, simply for 

the purposes of heritability and genetic correlation analysis. 

Admixture analysis of the ABCD Study has shown the high rates of admixture, 

specifically in the AMR cohort. European admixture in AFR cohort can likely be 

attributed to normal admixture of European DNA in African Americans (AFR). 

Conversely, this can also be said of admixed Americans (AMR), as they too have 

naturally high levels of European and African admixture. Nonetheless, this population 

structure introduces additional confounding and variability that reduces power of 

association tests and limits inference. 

 Based on my genetic analyses, nOCD is indeed a better approximation of true 

OCD diagnosis than bnOCD. Unfortunately, due to very low sample sizes, specifically in 

terms of the number of cases, power for genetic analyses of OCD in ABCD Study is 

very limited. These analyses can, however, be meta-analyzed into larger consortia to 

increase power and diversity in samples. The possibility of local ancestry-based 

inferences has been explored; however, the small sample sizes lead to a high rate of 

spurious associations.  

ABCD Study remains a valuable resource for genet studies. Additional 

longitudinal data will be useful for further phenotype refinement and improvements in 

association. Some methodological changes, like running simple logistic modelling, might 

enable post-GWAS analyses, like heritability and genetic correlation estimation.  



 

123 

 

 
Figure 5-1. Sample (top) and marker/SNP (bottom) genotyping rates for ABCD study. 

Red lines represent 0.95 GRS and GRSNP cutoffs. 

 
Figure 5-2. Batch-wise sample genotyping rates for ABCD study. Batches (top to 

bottom, left to right): saliva 1, whole blood 1, saliva 2, whole blood 2, saliva 3, 
and saliva 4. Red lines represent 0.95 GRS cutoff.  
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Figure 5-3. Post-QC sample (top) and marker/SNP (bottom) genotyping rates for 

ABCD study. Red lines represent 0.95 and 0.98 GRS and GRSNP cutoffs. 

 
Figure 5-4. Post-QC batch-wise sample genotyping rates for ABCD study. Batches 

(top to bottom, left to right): saliva 1, saliva 2, saliva 3, and saliva 4. Red lines 
represent 0.95 and 0.98 GRS cutoffs.  
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Figure 5-5. Distribution of pHWE values in ABCD study. Distribution of all markers (top) 

and only those markers in high Hardy-Weinberg disequilibrium (bottom) with 
pHWE ≤ 10-7. 

 
Figure 5-6. Distribution of FHET values in ABCD study. Red lines indicate mean(FHET) ± 4 

* sd(FHET) cutoffs.  
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Figure 5-7. Distribution of MAF values in ABCD study. Red lines indicate cutoffs at 

0.01, 0.02, 0.03, 0.04, and 0.05. 

 
Figure 5-8. Population stratification of ABCD data compared to 1kGPp3 reference. 

Visualized are principal component 1 vs. 2 biplots, with respect to 26 
populations explaining 65.71% of variance.   
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Figure 5-9. Superpopulation stratification of ABCD data compared to 1kGPp3 

reference. Visualized are principal component 1 vs. 2 biplots, with respect to 
5 superpopulations explaining 65.71% of variance.   
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Figure 5-10. Population structure of ABCD study across the first 4 principal 

components. Colors represent superpopulations, whereas circles indicate 
ABCD study participants (any OCD status). The diagonal shows density plots 
for each principal component.  
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Figure 5-11. Population structure of nOCD samples across the first 4 principal 

components. Colors represent superpopulations, whereas circles indicate 
nOCD participants from the ABCD study. The diagonal shows density plots 
for each principal component.  
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Figure 5-12. Relationship-aware population stratification biplots. Black dots represent 

individuals from unrelated subset, blue pluses represent individuals from the 
related subset. 

 
Figure 5-13. Population structure aware relationships. As expected, the less related 

individuals are, the higher proportion of no shared (k0) alleles.  
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Table 5-1. GWAS sample summaries. 

Phenotype Ancestry NCASES NCONTROLS NTOTAL % Female 

ccGWAS 

nOCD AMR 49 196 245 38.78 

AFR 59 236 295 35.59 

EUR 155 660 825 35.19 

MEGA 273 1,092 1,365 35.92 

bnOCD AMR 239 956 1,195 47.70 

AFR 286 1,144 1,430 41.61 

EUR 820 3,280 4,100 42.22 

MEGA 1,345 5,380 6,725 43.06 

qGWAS 

OCS AMR - - 1,388 52.45 

AFR - - 1,400 48.14 

EUR - - 4,339 50.88 

MEGA - - 7,127 50.65 
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Table 5-2. Summary of PRS experiments. 

Discovery Target sample (ABCD) 

ABCD 

nOCD bOCD bnOCD OCS 

nOCD B A B A 

bOCD A B B A 

OCS A B B B 

PGC     

ADHD A A A A 

AN A A A A 

ANX A A A A 

ASD A A A A 

BPD A A A A 

CD A A A A 

MDD A A A A 

OCD A A A A 

PD A A A A 

PTSD A A A A 

SCZ A A A A 

TS A A A A 
A: target samples include all ancestry cohorts. B: target samples only include non-matching ancestry 
cohorts.  
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Table 5-3. Summary of GWAS genomic inflation factor, λGC. 

Phenotype Ancestry NSNP λGC λGC-GENOTYPED 

nOCD AMR 5,322,421 1.008 0.996 

 AFR 5,322,421 1.061 1.080 

 EUR 5,322,421 0.993 0.987 

 MEGA 5,322,421 1.003 0.990 

bnOCD AMR 5,322,421 0.994 0.993 

 AFR 5,322,421 1.000 1.007 

 EUR 5,322,421 0.987 0.998 

 MEGA 5,322,421 0.979 0.977 

OCS AMR 5,322,421 1.008 1.004 

 AFR 5,322,421 0.998 0.990 

 EUR 5,322,421 0.981 0.986 

 MEGA 5,322,421 0.988 0.982 
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Figure 5-14. nOCD GWAS Manhattan plots.  



 

135 

 

 
 

Figure 5-14. Continued.  
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Figure 5-15. nOCD GWAS QQ plots.  
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Figure 5-15. Continued.  
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Figure 5-16. bnOCD GWAS Manhattan plots.  
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Figure 5-16. Continued.  
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Figure 5-17. bnOCD GWAS QQ plots.  
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Figure 5-17. Continued.  
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Figure 5-18. OCS Manhattan plots.  
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Figure 5-18. Continued.  
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Figure 5-19. OCS GWAS QQ plots.  
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Figure 5-19. Continued.  
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Table 5-4. Summary of GWAS top hit loci, p < 10-5. 

Chr Mb nOCD bnOCD OCS 

  AM AF EU ME AM AF EU ME AM AF EU ME 

1 1 . . . . . . . . . . G . 

  4 . . . . . . I . . . . . 

 41 . . . . . . . G . . . . 

  58 . . . . G . . . . . . . 

 64 I . . . . . . . . . . . 

 106 . . . . . . . . . . . I 

 115 . G . . . . . . . . . . 

 156 . . . . . . . G . . . . 

 168 . . . . . . . . . . I . 

 246 . . G . . . . . . . . . 

2 30 . . . I . . . . . . . . 

 33 . . . . . . . . . G . . 

 45 . . . I . . . . . . . . 

 65 I . . . . . . . . . . . 

 115 . . . . . . . . G . . . 

 128 . . . G . . . . . . . . 

 166 . . . . . . . . . . . G 

 193 . . . . . G . . . . . . 

 200 . . . . . . G . . . . . 

 220 I . . . . . . . . . . . 

 231 . . . . . . . I . . . . 

 235 . . . . . . I . . . . . 

3 3 . . . . . I . . . . . . 

 6 . . . . . . . . . . . I 

  18 . I . . . . . . . . G . 

 21 . . . . . . . . . I . . 

 34 . I . . . . . . . . . . 

 37 . . . . . G . . . . . . 

 45 . . . . . G . . . . . . 

 70 . . . . I . . . . . . . 

 87 . I . . . . . . I . . . 

 114 . . . . . . G . G . . . 

 145 . . . . . I . . . . . . 

 161 I . . . . . . . . . . . 

4 3 . . . . . . . . I . . . 

 43 . . . . . I . . . . . . 

Note: Bolded italicized rows indicate a locus that associated with a phenotype with p < 10-5 in more than 
one GWAS. AM = AMR, AF = AFR, EU = EUR, ME = MEGA.  
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Table 5-4. Continued. 

Chr Mb nOCD bnOCD OCS 

  AM AF EU ME AM AF EU ME AM AF EU ME 

4 68 . . . . . . . . G . . . 

 86 . . . . G . . . . . . . 

 139 . . . . . . . . . . . I 

 158 . . . . . I . . . . . . 

 160 . . . . . . . . . G . . 

 180 I I . . . . . . . . . . 

5 3 . . . I . . . . . . . . 

 20 . . . G . . . . . . . . 

 23 . . . . . I . . . . . . 

 28 . I . . . . . . . . . . 

 36 . . I . . . . . . . . . 

 42 . . . . . . . . . . . I 

 43 I . . . . . . . . . . . 

 55 . . I . . . . . . . . . 

 66 . . . G . . . . . . . . 

 67 . . . . . . I . I . . . 

 119 . . . . . I . . . . . . 

 147 . . . . . . . . . I . . 

6 2 . . . . . . . I . . . . 

 20 . . . . . . G G . . . . 

 32 . . . . . . . . G . . . 

 33 . . I . . . . . . . . . 

 35 . G . . . . . . . . . . 

 108 . . . . I . . . . . . . 

 129 . . . . G . . . . . . . 

 151 . . . . . . . . G . . . 

 166 . . . . . . . . . G . . 

7 0 . G . . . . . . . . . . 

 9 . . . . . . I . . . . . 

 21 . . . I . . . . . . . . 

 30 I . . . . . . . . . . . 

 35 . . . . . I . . . . . . 

 77 G . . . . . . . . . . . 

 88 . . . . G . . . . . . . 

 110 . . . G . . . . . . . . 

 118 . . . . . . . . . . . I 
Note: Bolded italicized rows indicate a locus that associated with a phenotype with p < 10-5 in more than 
one GWAS. AM = AMR, AF = AFR, EU = EUR, ME = MEGA.  
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Table 5-4. Continued. 

Chr Mb nOCD bnOCD OCS 

  AM AF EU ME AM AF EU ME AM AF EU ME 

7 153 . . . G . . . . . . . . 

8 13 . G . . . . . . . . . . 

 23 . . . . . . . . . I . . 

 72 . . . . . . . . . . . G 

 77 . . . . . . . . . I . . 

 108 I . . . . . . . . . . . 

 139 . . . . . I . . . . . . 

9 12 I . . . . . . . . . . . 

 13 . . . . I . . . . . . . 

 88 . . . . . I . . . . . . 

 95 G . . . . . . . . . . . 

 112 . . . . . G . . . . . . 

 122 . . . . . . . . . . . I 

 130 . . . . . . . G . . . . 

10 72 . . . . . . . . . I . . 

 108 . . . . . . . . . . G G 

 121 . . . . . . . . . G . . 

11 120 . . . G . . . . . . . . 

 123 . . . . G . . . . . . . 

 126 . . . . . . . . . G . . 

 134 . . . . G . . . . . . . 

12 0 . . . . . G . . . . . . 

 4 . . . . G . . . . . . . 

 5 . . . . . . . . . . G . 

 42 . . . G . . . . . . . . 

 57 . G . . . . . . . . . . 

 67 . . . . . . . . . I G . 

13 23 . . . . G . . . . . . . 

 73 . . I . . . . . . . . . 

 113 . . . . . . . I . . . . 

14 21 . . . . . G . . . . . . 

 24 . . . . . . . G . . . . 

 56 . . . G . . . . . . . . 

 70 . . . . . G . . . . . . 

 76 . . . . . . . I . . . . 

15 33 . . G . . . . . . . . . 

Note: Bolded italicized rows indicate a locus that associated with a phenotype with p < 10-5 in more than 
one GWAS. AM = AMR, AF = AFR, EU = EUR, ME = MEGA.  
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Table 5-4. Continued. 

Chr Mb nOCD bnOCD OCS 

  AM AF EU ME AM AF EU ME AM AF EU ME 

 94 I . . . . . . . . . . . 

 98 . . . . . . . I . . . . 

16 5 . G . . . G . . G . . . 

 8 I . . . . . . . . . . . 

 20 . . . . . . . . G . . . 

 21 . . . . . G . . . . . . 

 24 . . . . . . . I . . . . 

 60 . I . . . . . . . . . . 

 66 . . G . . . . . . . . . 

 78 . . . . . . . . . . G . 

17 5 . . . . . . . . . . . I 

 16 . . G G . . . . . . . . 

18 40 . . . . . I . . . . . . 

 45 . . . . . G . . . . . . 

 43 . . . . I . . . . . . . 

 52 . . . . . . . . G . . . 

 57 . . . I . . . . . . . . 

19 6 . . . . . I . . . . . . 

 10 . . . . I . . . . . . . 

 15 . . G . . . . . . . . . 

20 38 . . . . . . I . . . . . 

 50 . . . . . G . . . . . . 

21 29 . . . . . . . . . . I . 

22 22 . . . . . I . . . . . . 

 29 . . . . . . . . . . . G 

 38 . . . . . . . G . . . . 

 49 . . I I . . . . . . . . 

Note: Bolded italicized rows indicate a locus that associated with a phenotype with p < 10-5 in more than 
one GWAS. AM = AMR, AF = AFR, EU = EUR, ME = MEGA.  
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Figure 5-20. Ancestry overlapping loci with p < 10-5.  
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Figure 5-21. Phenotype overlapping loci with p < 10-5.  
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Table 5-5. GWAS GO Analysis summary. 

GO Term nOCD bnOCD OCS 

 AM AF EU ME AM AF EU ME AM AF EU ME 

Neuron to neuron synapse 10-2 - - - - - - - - - - - 

Integral component of 
lumenal side of endoplasmic 
reticulum membrane 

- - - - - - - - 10-4 - - - 

ER to Golgi transport vesicle 
membrane 

- - - - - - - - 10-4 - - - 

Clathrin-coated endocytic 
vesicle membrane 

- - - - - - - - 10-4 - - - 

Trans-Golgi network 
membrane 

- - - - - - - - 10-3 - - - 

Lysosomal membrane - - - - - - - - 10-2 - - - 

Note: AM = AMR, AF = AFR, EU = EUR, ME = MEGA.  
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Figure 5-22. LocusZoom plot with p < 10-5 loci overlapping RBFOX1 gene.  
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Figure 5-23. GTEx plot for RBFOX1. 

 

 

 
Figure 5-24. ABCD PRS analysis summary heatmap of RN

2 statistics.  
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Figure 5-25. PGC PRS-PCA analysis on full target samples. CD = cross-disorder / 

psychopathology meta-GWAS.  
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Figure 5-26. PGC PRS-PCA analysis by repeated undersampling. CD = cross-disorder 

/ psychopathology meta-GWAS.  
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Table 5-6. REML analysis of ABCD sample. 

Cohort Ancestry h2
OCD SEOCD h2

OCS SEOCS rg SEg 

bnOCD EUR 0.00000 0.06090 0.00153 0.04872 - - 

bnOCD MEGA 0.00000 0.04145 0.00000 0.03579 - - 

Note: Trait correlations were not computable due to sample size limitations. 

 

 
Figure 5-27. Admixture analysis of ABCD Study. 
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CHAPTER 6  
CNV ANALYSIS OF TOURETTE SYNDROME FAMILIES 

Background 

Shortly after the advent and wide-spread utilization of GWAS, hundreds of 

genetic variants underlying complex diseases and traits were identified, yet they usually 

conferred small magnitudes of risk and explained a fraction of estimated genetic 

variance from the family studies (Zuk et al., 2012). Possible sources of missing genetic 

variation underlying this missing heritability problem could be due to large-effect rare 

variants that can only be detected by sequencing or structural variants which affect 

dosage of a given allele but not its sequence composition (Manolio et al., 2009). One 

such structural variant type includes CNVs. CNVs form faster than any other mutation in 

the human genome, likely due to its ability to escape repair mechanisms, and usually 

arise through non-homologous end joining, replication, and replication of non-

contiguous DNA segments – usually mediated by cellular stress which can cause repair 

of broken replication fork switch from high-fidelity replication mechanisms to low-fidelity 

ones (Hastings et al., 2009). Indeed, CNVs are found to make up 4.8-9.5% of the 

human genome, and can be very polymorphic (Zarrei et al., 2015). However, the rare 

and large CNVs have been found to play an important role human disorders, especially 

those with severe psychiatric phenotypes like schizophrenia, ASD, and intellectual 

disability (Shaikh, 2017). In addition to being associated with disorders at large, CNVs 

were also found to underlie impairments in cognitive domains like memory and 

perceptual reasoning (Thygesen et al., 2021). 

Detection of CNVs has its fair share of challenges – namely, existing microarray 

and sequencing technologies were developed with a goal of identifying sequence of 
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nucleotides in the human genome in a binary-like present/absent form, yet CNV 

detection relies on complex statistical and computational modelling of unbinarized signal 

measurements to determine dosage of a given nucleotide or segments thereof as it 

relates to the rest of the sample (Carter, 2007). Most reliable methods for detecting 

CNVs involve low-throughput qPCR, molecular copy counting, and paralog ratio testing 

(Li & Olivier, 2013). However, these methods, despite being high-resolution, sensitive, 

and specific, are not suitable for genome-wide high-throughput experiments required to 

detect weaker effects CNVs like those presumed to underlie complex genetic disorders. 

Thus, numerous approaches have been developed to detect CNVs from both 

sequencing and microarray data, namely relying on HMM, expectation-maximization 

(EM) clustering, REML, various forms of regressions (under Gaussian, Poisson, and 

negative binomial assumptions), least absolute shrinkage and selection operator 

(LASSO) regressions, and machine learning (ML) approaches like deep learning and 

neural networks, and random forest algorithms (Li & Olivier, 2013; Macé et al., 2016; 

Hill & Unckless, 2019; Pounraja et al., 2019; Zhang et al., 2019; Zhuang et al., 2020; 

Glessner et al., 2021). For this project, the primary calling algorithm used in PennCNV, 

an integrated HMM-based approach to detecting CNVs in family samples from 

microarray data (Wang et al., 2007; Diskin et al., 2008; Wang et al., 2008). To increase 

validity and reliability of detected CNVs, a secondary caller QuantiSNP, can be used to 

refine the CNV call-set (Colella et al., 2007). 

As discussed in Chapter 2, there are several studies that probed the role of 

CNVs in TS (Huang et al., 2017; Wang et al., 2018). In this chapter, I introduce a 

continuation of these efforts by analyzing impact of CNVs on OCRDs, specifically TS in 
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the largest ever family sample, focusing on both rare and common variation, as well as 

inherited and de novo CNV mutations. 

Methods 

Samples 

TD 

Sample and phenotyping. Sample with families of probands ascertained for 

TDs was collected and provided by the Tourette Association of America International 

Consortium for Genetics (TAAICG, 2007). TAAICG cohort consists of TD (primarily TS) 

probands collaboratively recruited by TS investigators from numerous sites throughout 

the North America, Europe, and Israel. Over 1,200 families were used as a starting 

sample. Diagnosis level information was available for TS, PMVT, TTD, OCD, and 

ADHD. Biosamples used for genetic experiments were obtained from either whole 

blood, saliva, and peripheral blood mononuclear cell lines. Individuals were diagnosed 

using a standardized and validated semi-structured direct interview (TAAICG tic and 

comorbid symptom inventory) and recruited by the clinicians at the respective sites, TS 

specialty clinics, and online (Darrow et al., 2015). Phenotypes were verified by multi-

investigator best-estimate analysis (Leckman et al., 1982). Raw genotype data in form 

of .idat files were provided for processing and analysis.  

Genotyping. The TAAICG samples were genotyped on a Infinium Global 

Screening Array-24 BeadChip, versions 1 (GSAv1) and 3 (GSAv3), across 4 waves of 

genotyping between 2020 and 2021. A total of 4,473 samples were genotyped (with a 

few samples being duplicates) in following waves: 

1. GSAv1 genotyping of 2,349 samples (released on 01/08/2020), 
2. GSAv1 genotyping of 867 samples (released on 02/11/2020), 
3. GSAv1 genotyping of 1,174 samples (released on 08/18/2021), 
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4. GSAv3 genotyping of 83 samples (released on 08/23/2021). 
 

Both GSAv1 and GSAv3 feature backbone panel of SNPs specifically created to 

combine multi-ethnic genome-wide content with curated clinical research variants 

markers for precision medicine research, and multi-disease drop-in panel of SNPs 

consisting of fine-mapping content derived from exome sequencing and meta-analyses 

of phenotype-specific consortia focused on the psychiatric, neurological, cancer, 

cardiometabolic, autoimmune, and anthropometric traits (Illumina, 2017; Illumina 

2020b). GSAv1 features 642,824 backbone SNPs and 57,254 SNPs from the multi-

disease drop-in panel. GSAv3 features 654,027 backbone SNPs and 76,039 SNPs from 

the multi-disease drop-in panel. However, Illumina has updated manifest files for GSAv1 

since its release, to now feature 618,540 backbone SNPs only. For the CNV analysis 

purposes, only the backbone SNPs are considered as multi-disease drop-in panel 

varies across samples and is not available for the comparison sample. Raw .idat files 

were provided, together with .bpm SNP manifest file, and .csv sample sheet, importable 

and processable by Illumina’s GenomeStudio software (Illumina, 2020a). Data were 

accessed through Terra (Terra, n.d.). 

ASD and unaffected siblings 

Sample and phenotyping. For comparison groups, I obtained family data 

composed of ASD probands and unaffected siblings recruited by the Simons 

Foundation Autism Research Initiative (SFARI), specifically from their Simons 

Foundation Powering Autism Research and Knowledge (SPARK) study (SPARK 

Consortium, 2018). As of February 2021, SPARK study enrolled 251,082 individuals, 

91,477 of which have ASD diagnosis. Phenotyping for primary disorder of interest, ASD 
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is based on individual or parent (in case of underage participants) self-reported previous 

ASD diagnosis by a trained professional (physician, psychologist, or therapist). The 

unaffected siblings are, in fact, unscreened – therefore, some missed ASD cases are 

possible. Other phenotyping data includes background history and medical screen, 

CBCL, and several other inventories probing ASD-specific symptomatology that is not of 

immediate interest to this project. 

Genotype data. As of February 2021, 27,615 participants had their genotyping 

data released. All genotyping was done on GSAv1, described in the previous section. 

Batch information was not available for these samples. Data were accessed through 

GlobusOnline (Foster, 2011; Allen et al., 2012). 

Data Processing 

Part of the QC for this dataset was previously conducted by a member of our 

team for the purposes of GWAS on TAAICG trios, Dongmei Yu. The pre-processing 

step included GWAS QC approaches as described in Chapter 5. Briefly, the following 

exclusion criteria were used to clean the samples: GRSNP < 0.98; GRS < 0.98; PHWE < 

10-6 (among unaffected individuals); MAF < 0.01; MISSDiff > 0.02; MERSNP > 0.05; MERS 

> 0.03; |FHET| > 0.2, where MISSDiff represents differential missingness, and MERSNP 

and MERS represent SNP-wise and sample-wise Mendelian error rate. Additional steps 

included removal of incomplete trios, and cross-contaminated and unexpectedly related 

samples as determined by IBD. Remaining analyses in this chapter were all performed 

by me. 

TAAICG 

Input of 4,472 individuals was first filtered to remove incomplete trios, resulting in 

retention of 3,967 individuals. Wave 4 containing 83 individuals had an overall poor 
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genotyping performance and was genotyped on a completely different platform from the 

rest of the data, so it was excluded from the analysis. The remaining individuals were 

grouped in father-mother-offspring groups for trio calling, resulting in 1,376 unique trios 

from 3,815 individuals from 1,226 families. Summary is shown in Table 6-1. 

SPARK 

SPARK data input of 27,281 individuals was first filtered to remove all families 

where both parents and two or more children were not present, resulting in a sample of 

14,045 individuals. Subsequently, families with missing ASD phenotypes were 

excluded, resulting in 13,857 retained participants. Next, 28 half siblings were also 

removed from the analysis. Samples without associated .idat files were removed, 

bringing sample size down to 13,697. Only complete families were kept for the analysis, 

resulting in removal of 176 participants. Finally, only those samples which had both 

ASD-affected and unaffected children were retained, bringing the final sample size 

down to 11,438. After closer inspection, some mismatching with available genotype files 

was present. After removing the mismatched individuals and affected families, 11,160 

individuals were retained for the analysis. Samples were further stratified by proband 

status. In the ASD proband subsample, there were 2,893 unique trios from 8,341 

individuals from 2,724 families. In the unaffected sibling subsample, there were 2,785 

unique trios from 8,233 individuals from 2,724 families. Summary is shown in Table 6-1, 

TAAICG refers to the sample with TS probands, SPARK-ASD refers to the sample with 

ASD probands, and SPARK- SIB refers to the sample with unaffected sibling probands. 

Majority of the analyses will focus on differences between these three groups or 

batches of TAAICG. 
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Genetic Report formation 

Based on preprocessed data, samples were imported into Illumina 

GenomeStudio and clustering was performed de novo (without utilization of canonical 

cluster files) with data-attached SNP manifest files. If batch information was available, 

clustering was done per-batch. After clustering was complete, non-autosomal SNPs, 

QC SNPs, and SNPs from the drop-in panel were removed from the analysis. For 

TAAICG data, the number of remaining SNPs was 600,679. For SPARK data, the 

number of remaining SNPs was 600,899. Genome-wide summaries of copy-number 

metrics relevant for this study are shown in Table 6-2. Listed are Med(LRRSD), 

SD(LRRSD), Med(BAFSD), and SD(BAFSD), where Med and SD stand for median and 

standard deviation, LRRSD stands for sample-wise standard deviation of the log R ratio, 

and BAFSD stands for sample-wise standard deviation of the B allele frequency. 

Log R ratio (LRR) is a normalized signal intensity for each SNP on the 

microarray. For each SNP, two-color readout results in intensity values in two channels 

(where each color represents one of two alleles for a given SNP). These intensity 

values are polar transformed to obtain normalized intensity values (R) and allelic 

intensity ratios (θ).  

LRR for ith SNP and jth individual is then calculated according to the Equation 6-1. 

B allele frequency (BAF) indicates relative quantity of one allele compared to another at 

a given locus, where B allele indicates non-reference allele, note these are not 

equivalent to MAF, as MAF is the frequency of a less prevalent allele in a given 

population. Mathematical formula for calculating BAF for ith SNP and jth individual is 

shown in Equation 6-2. Note that RO, i, j and θO, i, j are metrics observed for ith SNP and jth 

individual, whereas RE, i, θAA, i, θAB, i, and θBB, i are metrics for ith SNP either derived from 
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whole sample data or retrieved from canonical sample files. Important consideration for 

CNV analysis is that each SNP’s metrics are affected by individual’s data on that 

position, but not other SNPs in the dataset. 

𝐿𝑅𝑅𝑖,𝑗 = log2 (
𝑅𝑂,𝑖,𝑗
𝑅𝐸,𝑖

) 

(6-1) 

𝐵𝐴𝐹𝑖,𝑗 =

{
 
 
 
 

 
 
 
 

0   , 𝜃𝑂,𝑖,𝑗 < 𝜃𝐴𝐴,𝑖

𝜃𝑂,𝑖,𝑗 − 𝜃𝐴𝐴,𝑖

2(𝜃𝐴𝐵,𝑖 − 𝜃𝐴𝐴,𝑖)
   , 𝜃𝐴𝐴,𝑖 ≤ 𝜃𝑂,𝑖,𝑗 < 𝜃𝐴𝐵,𝑖

1

2
−

𝜃𝑂,𝑖,𝑗 − 𝜃𝐴𝐵,𝑖

2(𝜃𝐵𝐵,𝑖 − 𝜃𝐴𝐵,𝑖)
   , 𝜃𝐴𝐵,𝑖 ≤ 𝜃𝑂,𝑖,𝑗 < 𝜃𝐵𝐵,𝑖

1   , 𝜃𝑂,𝑖,𝑗 ≥ 𝜃𝐵𝐵,𝑖

 

(6-2) 
 

No special QC was performed at this step, instead Illumina final report files were 

generated by exporting all autosomal backbone SNP values for all individuals for 

chromosome and position, nucleotide value for both alleles (A/T/G/C), LRR i,j, and BAFi,j. 

Final report files were then uploaded on HiPerGator for further analysis.  

PennCNV Calling 

PennCNV algorithm jointly calling CNVs for each set of trios was used as a 

primary algorithm in this study (Wang et al., 2007; Diskin et al., 2008; Wang et al., 

2008). First, samples were unpacked from final report files using the 

split_illumina_report.pl script from the PennCNV package, version 1.0.5. Subsequently, 

the GC model file was generated using hg19 reference genome and cal_gc_snp.pl 

script. The GC model file summarizes percentage of G or C base pairs in a 500kb 

region flanking each SNP from the dataset, this information will then be used to adjust 
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the markers for the effects of genomic wave due to dense areas of G or C base pairs. 

Then a population frequency of B allele (PFB) file was formed using the compile_pfb.pl 

script. PFB file curates a list of SNPs to be used for CNV calling, together with the BAF 

and genomic coordinates. Lastly, HMM file is obtained which provides the expected 

signal intensity values and transition probabilities for different copy number states. Each 

sample was adjusted for genomic wave using the genomic_wave.pl script, which 

reduces the rate of false-positive CNV calls due to local GC content fluctuations. 

PennCNV utilizes Vitebri algorithm to determine copy-number state at each SNP, 

then identifies stretches of markers deviating from expected values which are classified 

as CNVs. PennCNV has 6 possible outcomes for each marker and called CNVs, these 

states (for diploid organisms and autosomal loci), are: 

0. Double deletion (can only be a homozygous deletion), 
1. Single deletion (a heterozygous deletion), 
2. Normal state, 
3. Single duplication (a heterozygous duplication), 
4. Double duplication (either a heterozygous triplication or a homozygous duplication), 
5. Normal state with loss of heterozygosity. 

 

Groups of trios were subsequently jointly processed through PennCNV for trio 

calling using the detect_cnv.pl -joint script. This process is computationally intensive, 

thus I used 108 cores with 7GB per core on HiPerGator to parallelize the joint calling 

process. Finally, since PennCNV has a tendency of artificially splitting large CNVs, 

clean_cnv.pl combineseg script was used to reanneal them and remove this technical 

artifact prior to post-calling QC. In addition to joint calling, probands were individually 

called to generate sample-level intensity QC reports (which do not get generated with 

joint mode). 
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Post-Calling QC 

Once all the calling is done, merged CNVs, unmerged joint-called CNVs, and QC 

output summaries from individually called CNVs were imported into R, where they were 

wrangled to form CNV call-sets annotated with CNV calls, QC information, and de novo 

vs. inherited status. This is also a master CNV call-set which will be subjected to further 

analyses. 

Separately, for each proband phenotype annotation files were prepared as 

follows. For TAAICG probands, the rows were indexed by proband ID, then the 

following information were obtained for each proband: batch, phenotypic and SNP sex, 

and diagnostic information for each proband and their parents (included TS, PMVT, 

PTD, TS not otherwise specified, OCD, and ADHD). For SPARK probands, the rows 

were indexed by proband ID, then the following information were obtained for each 

proband: sex, ASD diagnostic information for each proband and their parents. 

CNVs covering small number of SNPs or small genomic regions are more likely 

to be unreliable or false positives. Thus, CNVs spanning less than 10 SNPs and less 

than 20kb are filtered out. After filtering, 25 trios from TAAICG group, 923 trios from 

SPARK-ASD group, and 900 trios from SPARK-SIB group had no CNVs, resulting in 

their removal from the study. Table 6-3 summarizes number of CNVs after filtering for 

size and SNP count for CNVs overall and de novo CNVs. 

Subsequently, CNVs spanning telomeric regions (200kb from either end of the 

chromosomes), centromeric regions (+100kb on either end of the centromeres), and 

immunoglobulin and T-cell receptor regions were all removed. These regions are prone 

to copy-number variation and not of immediate interest, or likely to harbor CNVs with 

true effect on pathology. Out of 42,049 CNVs from the total call-set, 2,255 were 
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removed due to overlaps with centromere, 3,681 were removed due to overlaps with 

immunoglobulin or T-cell receptor regions, and 893 were removed due to overlaps with 

telomeric regions. After filtering CNVs overlapping these loci, average number of CNVs 

per individual was 6.872, with maximum at 976. Overall, there were 59 individuals who 

had over 50 called CNVs, 25 of which had over 100 called CNVs. Individuals with over 

100 called CNVs were excluded from further analysis. 

The remaining samples were annotated with QC metrics, LRRSD and BAFSD, and 

inspected to determine if additional filtering was necessary. Cutoff values for each 

metric were determined for each group by taking their median and adding it to three 

times its standard deviation. Distribution of LRRSD and BAFSD are shown in Figures 6-1 

and 6-2, respectively, together with the visualized cut-offs. This resulted in exclusion of 

511 trios across the board. 

Annotations 

Gene annotations were determined using biomaRt package in R (Durnick et al., 

2005; Durinck et al., 2009). Briefly, genomic positions of CNVs were used to find any 

overlapping genes and annotate which genes are overlapped and if genes are 

overlapped.  

Global Burden Analysis 

Global burden metric was assessed using generalized linear modelling in R. 

Burden was examined for number of CNVs and average size of CNVs overall and 

stratified by de novo status and size bin (small CNVs < 100kb, intermediate CNVs < 

500kb, large CNVs > 500kb). Associations were covaried for LRRSD, sex, and 10 

principal components. Regressions were fit for TAAICG probands using SPARK-ASD 

and SPARK-SIB as reference groups. Principal components for controlling for 
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population structure were determined using the same methods described in Chapter 5. I 

used first 4 principal components for modelling global burden. 

Incidence Rate Ratio 

De novo Incidence rate ratios (IRR) were calculated for TAAICG probands using 

SPARK-ASD and PARK-SIB as reference groups. Grouped IRRs were calculated for 

number of CNVs stratified by size bin (small CNVs < 100kb, intermediate CNVs < 

500kb, large CNVs > 500kb). IRRs were calculated according to Equation 6-3: 

𝐼𝑅𝑅𝐷𝑥 =
𝑁De Novo CNVs Dx ÷ 𝑁Dx

𝑁De Novo CNVs Ctrl ÷ 𝑁Controls
 

(6-3) 
 

where NDe Novo CNVs Dx refers to number of de novo CNVs in TS cases (TAAICG), and the 

NDe Novo CNVs Ctrl variable refers to the number of de novo CNVs in comparison group 

(SPARK-ASD or SPARK-SIB). NControls and NDx refer to the total number of individuals 

SPARK-ASD or SPARK-SIB, and TAAICG, respectively. The 95% confidence intervals 

were constructed according to Equations 6-4 and 6-5. Association tests were performed 

according to Equation 6-6. 

95% 𝐶𝐼 [𝐼𝑅𝑅𝐷𝑥] = 𝑒
{ln(𝐼𝑅𝑅𝐷𝑥) ± 1.96 × 𝑆𝐸[ln(𝐼𝑅𝑅𝐷𝑥)]} 

(6-4) 

𝑆𝐸 [ln(𝐼𝑅𝑅𝐷𝑥)] = √
1

𝑁De Novo CNVs Dx
+

1

𝑁De Novo CNVs Ctrl
 

(6-5) 

𝑧𝐷𝑥 =
ln(𝐼𝑅𝑅𝐷𝑥)

𝑆𝐸[ln(𝐼𝑅𝑅𝐷𝑥)]
 

(6-6) 
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Gene Tests 

Association for prior identified genes were evaluated, including previously 

associated NRXN1 and CNTN6. This analysis was focused on specifically rare CNVs, 

i.e. CNVs which occurred in over 1% (67) of the total combined sample were excluded 

from the analysis. In total, 6,940 CNVs were intergenic and excluded from this analysis, 

the remaining 26,442 CNVs were genic. Among the genic CNVs, 14,301 were too 

common and thus removed from the analysis, leaving 12,141 CNVs for burden and 

gene-based analysis. For gene tests specifically, 8,992 genes in total were testable. 

From these, 5,132 were protein coding and used as final set of genes to test. Fisher’s 

exact tests were used to compare number of CNVs spanning given gene in TS (using 

ASD and unaffected siblings as controls) and ASD (using unaffected siblings as 

controls). Prior to test, CNVs were stratified by type (deletions or duplications). One-

sided p-values were obtained and controlled for FDR to account for multiple testing. 

Resulting significantly associated genes were subjected to GO analysis (as described in 

GO methods section of Chapter 5). 

Results 

Incidence Rate Ratios 

Analysis of de novo IRRs has shown TS probands to have lower de novo 

incidence rates compared to both ASD probands and unaffected siblings of ASD 

probands. With IRRTS-ASD = 0.62 (pTS-ASD < 0.001) and IRRTS-SIB = 0.66 (pTS-SIB < 0.001). 

Genic incidence rates were higher in ASD than TS (IRRTS-ASD = 0.91; pTS-ASD = 0.012). 

Genic de novo incidence rates were higher in ASD than both TS and unaffected siblings 

of ASD, with IRRTS-ASD = 0.74 (pTS-ASD = 0.001) and IRRASD-SIB = 1.33 (pASD-SIB < 0.001), 
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respectively. Increased incidence of either de novo, genic, or de novo genic CNVs was 

not observed in TS samples (Table 6-4 and Table 6-5). 

Burden Tests 

Burden tests controlling for LRRSD, sex, and first 4 ancestry PCs has shown 

variable, yet consistently higher burden of CNV sizes and numbers for ASD and 

unaffected siblings compared to TS probands. Stratifications for burden tests were done 

based on de novo status (considering all CNVs or de novo CNVs only), mutation type 

(all CNVs, only deletions, and only duplications), genic overlap and frequency (all called 

CNVs or rare genic CNVs), and size bins. All CNV global burden tests are visualized in 

series of figures starting with Figure 6-3 through Figure 6-26. 

Overall, unexpected patterns emerge in global burden tests. Namely, consistent 

patterns of associations between CNV numbers and SPARK samples emerge, 

contrasted by consistent patterns of association between average CNV sizes and 

TAAICG sample. When looking at rare genic CNVs specifically, this pattern is less 

pronounced, yet persistent. Such structure indicates substantial batch effects and 

warrants caution when interpreting global burdens in this study. 

Gene Associations 

Analysis of genes spanned by rare CNVs resulted in 94 genes significantly 

associated with TS as compared to ASD probands and their siblings (pFDR < 0.05). 

Table 6-7 is showing 41 of those genes, associating with TS-case status at pFDR < 0.01. 

Graphical representation of all associations comparing TS to unaffected siblings of ASD 

probands (Figure 6-27), TS to ASD probands (Figure 6-28), and ASD probands to their 

unaffected siblings (Figure 6-29), are shown in Miami plots – indicating strength of 

association (in terms of -log10(pFDR)), stratified by type of mutation (duplications above 
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and deletions below abscissa). GO analysis of significantly associated genes showed 

no significant trends in terms of biological processes, molecular functions, or cellular 

components clusters. 

Previously identified candidates CNTN6 and NRXN1 were successfully validated 

in this study. For NRXN1 deletions, odds ratios were ORTS-ASD = 1.68 (pFDR = 0.10) and 

ORTS-SIB = 4.84 (pFDR = 0.002). No significant relationship was observed when stratified 

by de novo status or size of CNVs. For CNTN6 duplications, odds ratios were ORTS-ASD 

= 6.48 (pFDR = 0.0009) and ORTS-SIB = 6.22 (pFDR = 0.0009). No significant relationship 

was observed when stratified by de novo status or size of CNVs. 

Other notable associations from Table 6-7 include PCNT, SSTR5, TBP, and 

TRPM1 which are all genes previously implicated in neuropsychiatric conditions like 

bipolar disorder, depression, and schizophrenia. 

In analysis of ASD probands with respect to their unaffected siblings, only 21 

genes were associated at pFDR < 0.05, and only 9 were associated at pFDR < 0.01. 

Discussion 

CNV analysis in TS and ASD data has shown to be challenging, generally 

defying expectations of higher CNV risk and burden in CNV metrics among the TS 

probands compared to the unaffected ASD siblings, but not necessarily the affected 

ASD probands. Namely, de novo IRR measurements were consistently higher for ASD 

probands and their unaffected siblings, with the risk ratio being higher for ASD-affected 

probands. This is likely since siblings of ASD probands, even though they don’t have 

ASD diagnosis, still carry many ASD-related genomic risk variants – CNVs included.  

Another, more plausible explanation, is phenotype misclassification – due to the 

absence of ASD-assessment of the unaffected siblings of ASD probands, there might 
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be an influential amount of undiagnosed ASD cases among the unaffected siblings. This 

could potentially explain the unexpected trends in global burden.  

I have successfully validated gene-specific risk of TS by replicating findings from 

Huang et al. (2017) reports of NRXN1 deletions and CNTN6 duplications as risk 

variants for TS. NRXN1 risk was not significant when compared to ASD group as 

opposed to the unaffected sibling group. This is likely because NRXN1 deletions also 

carry marked risk for ASD. This was not true for CNTN6, which appears to be TS-

specific effector. Both NRXN1 and CNTN6 mutations were predominantly inherited. 

Burden analysis has shown CNV numbers and average CNV sizes to carry risk 

predominantly for ASD, rather than TS. However, this relationship was different when it 

came to average CNV sizes of de novo mutations, which were found to carry risk for TS 

when compared to unaffected siblings of ASD probands. Re-assessment of CNV 

merging pipeline and post-calling quality control indicate these effects are not due to 

technical or random error, but persistent batch effects between the two consortia 

sample collections (TAAICG and SPARK). These batch effects represent an important 

obstacle for associations and their interpretations that needs to be addressed. 

Potential reasons for these batch effects can be boiled down to (1) insufficiently 

controlled lower-level batch effects, (2) phenotype misclassifications, and (3) intrinsic 

differences between the two samples that introduce variability during sample collection 

or wet lab processing. Insufficiently controlled lower-level batch effects could result in 

higher rates of “interruptions” to CNV calling and result in artifacts observed in this 

study. However, lower-level batch effects are difficult to control for due to missing data. 

For example, TAAICG samples were independently clustered based on genotyping 
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waves. SPARK data, however, were not processed in same manner due to absence of 

those information. These batches can be potentially identified using unsupervised 

machine learning approaches, which is one of the avenues currently explored.  

Phenotype misclassification can cause substantial skews in associations, 

especially in genetic studies of psychiatric phenotypes – as it was discussed in length in 

previous chapters. ASD phenotypes in SPARK datasets were based on self-reports of 

existing professional diagnosis, meaning that non-ASD individuals might be false 

negatives with less-penetrant forms of autism or have not yet been diagnosed. One 

potential way to address this issue is to stratify SPARK sample by other phenotypic 

measures that might be available (such as CBCL). These measures could be used to 

exclude extreme symptomatic cases within unaffected sibling group, potentially yielding 

more robust phenotypes. Lastly, intrinsic differences between the two samples that are 

not due to controllable factors would indicate that these two cohorts are ultimately 

analytically incompatible, and different samples altogether should be used. One 

obstacle to using different samples, however, includes different genotyping platform with 

different genome coverage density. I have developed a method that uses proximity-

based matching of loci, which could address such obstacles, but that is beyond the 

scope of this aim and subject to future experimentation.  

Unfortunately, the confounding batch effects have made it difficult to analyze and 

interpret CNV data. However, there are some notable silver linings. Namely, NRXN1 

and CNTN6 validation, and identification of 39 additional genes that might play a role in 

TS pathogenesis. Similar in previous reports (like Huang et al., 2017), NRXN1 deletions 

and CNTN6 duplications occur in 2.11% of TS patients (about 1% each) in the TAAICG 
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sample, underlying their importance in molecular processes that could contribute to TS 

pathology. A lot of additional work remains to be done to fully understand TS and its 

pathomechanisms, and outcomes of this aim clearly emphasize the importance of 

methodology and sample characteristics in such efforts.  
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Table 6-1. Sample summaries. 

Sample Participants Probands Families Mothers Fathers 

TAAICG 3,815 1,376 1,226 1,221 1,219 

SPARK-ASD 8,341 2,893 2,724 2,724 2,724 

SPARK-SIB 8,233 2,785 2,724 2,724 2,724 

 

Table 6-2. Copy number metric summaries. 

Sample Batch Med(LRRSD) SD(LRRSD) Med(BAFSD) SD(BAFSD) 

TAAICG 1 0.1403 0.0416 0.0385 0.0064 

 2 0.1607 0.0715 0.0385 0.0087 

 3 0.1435 0.0560 0.0309 0.0065 

 Joint 0.1439 0.0530 0.0381 0.0070 

SPARK Joint 0.1300 0.0809 0.0411 0.0241 

 

Table 6-3. CNV post-call summary. 

Metric TAAICG SPARK-ASD SPARK-SIB 

CNV Calls    

Any 8,522 (6.11) 18,138 (9.21) 15,389 (8.16) 

Double deletions 28 (0.02) 16 (0.01) 13 (0.01) 

Single deletions 4,053 (3.00) 7,335 (3.72) 6,186 (3.28) 

Single duplications 4,412 (3.27) 10,608 (5.38) 9,102 (4.83) 

Double duplications 29 (0.02) 179 (0.09) 88 (0.05) 

de novo    

Any 3,995 (2.96) 10,135 (5.14) 8,116 (4.31) 

Double deletions 26 (0.02) 16 (0.01) 13 (0.01) 

Single deletions 2,061 (1.53) 3,787 (1.92) 2,976 (1.58) 

Single duplications 1,905 (1.41) 6,282 (3.19) 5,100 (2.71) 

Double duplications 3 (0.00) 50 (0.03) 27 (0.01) 

 Note: number in the parenthesis shows sample-wise rates.  
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Figure 6-1. LRRSD distributions across samples with cutoff-values for sample 

exclusion.  
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Figure 6-2. BAFSD distributions across samples with cutoff-values for sample 

exclusion.  
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Table 6-4. Incidence rates of de novo and genic CNVs, by grup. 
Group Individuals with  
 de novo CNV genic CNV de novo and genic CNV 

TAAICG 377 (29.45%) 932 (72.81%) 136 (10.62%) 

SPARK-ASD 1,107 (40.21%) 2,052 (74.54%) 380 (13.80%) 

SPARK-SIB 1,024 (38.88%) 1,951 (74.07%) 283 (10.74%) 

 

Table 6-5. Incidence rate ratios of de novo and genic CNVs. 
Comparison TS (ref. ASD) TS (ref. SIB) ASD (ref. SIB) 

de novo CNV 

IRR 0.62 0.66 1.06 

SE [ln(IRR)] 0.06 0.06 0.04 

95% CI [IRR] (0.55, 0.70) (0.58, 0.74) (0.97, 1.15) 

pz 6.45 × 10-16 1.40 × 10-12  0.90 

genic CNV 

IRR 0.91 0.94 1.02 

SE [ln(IRR)] 0.04 0.04 0.03 

95% CI [IRR] (0.85, 0.99) (0.86, 1.01) (0.96, 1.09) 

pz 0.01 0.05 0.22 

de novo and genic CNV 

IRR 0.74 0.99 1.33 

SE [ln(IRR)] 0.10 0.10 0.08 

95% CI [IRR] (0.61, 0.90) (0.80, 1.21) (1.14, 1.55) 

pz 1.44 × 10-3 0.45 1.39 × 10-4 

Note: TS – TAAICG, ASD – SPARK-ASD, and SIB – SPARK-SIB.  
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Figure 6-3. OR plots of CNV count burden. Adjusted for LRRSD, sex, and 4 PCs. 

Stratified by binned sizes.  
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Figure 6-4. OR plots of average CNV size burden. Adjusted for LRRSD, sex, and 4 

PCs. Stratified by binned sizes.  
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Figure 6-5. OR plots of de novo CNV count burden. Adjusted for LRRSD, sex, and 4 

PCs. Stratified by binned sizes.  
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Figure 6-6. OR plots of average de novo CNV size burden. Adjusted for LRRSD, sex, 

and 4 PCs. Stratified by binned sizes.  
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Figure 6-7. OR plots of CNV deletion count burden. Adjusted for LRRSD, sex, and 4 

PCs. Stratified by binned sizes.  
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Figure 6-8. OR plots of average CNV deletion size burden. Adjusted for LRRSD, sex, 

and 4 PCs. Stratified by binned sizes.  
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Figure 6-9. OR plots of de novo CNV deletion count burden. Adjusted for LRRSD, sex, 

and 4 PCs. Stratified by binned sizes.  
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Figure 6-10. OR plots of average de novo CNV deletion size burden. Adjusted for 

LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-11. OR plots of CNV duplication count burden. Adjusted for LRRSD, sex, and 4 

PCs. Stratified by binned sizes.  
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Figure 6-12. OR plots of average CNV duplication size burden. Adjusted for LRRSD, 

sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-13. OR plots of de novo CNV duplication count burden. Adjusted for LRRSD, 

sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-14. OR plots of average de novo CNV duplication size burden. Adjusted for 

LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-15. OR plots of rare genic CNV count burden. Adjusted for LRRSD, sex, and 4 

PCs. Stratified by binned sizes.  
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Figure 6-16. OR plots of average rare genic CNV size burden. Adjusted for LRRSD, sex, 

and 4 PCs. Stratified by binned sizes.  
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Figure 6-17. OR plots of de novo rare genic CNV count burden. Adjusted for LRRSD, 

sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-18. OR plots of average de novo rare genic CNV size burden. Adjusted for 

LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-19. OR plots of rare genic CNV deletion count burden. Adjusted for LRRSD, 

sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-20. OR plots of average rare genic CNV deletion size burden. Adjusted for 

LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-21. OR plots of de novo rare genic CNV deletion count burden. Adjusted for 

LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-22. OR plots of average de novo rare genic CNV deletion size burden. 

Adjusted for LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-23. OR plots of rare genic CNV duplication count burden. Adjusted for LRRSD, 

sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-24. OR plots of average rare genic CNV duplication size burden. Adjusted for 

LRRSD, sex, and 4 PCs. Stratified by binned sizes.  



 

202 

 
Figure 6-25. OR plots of de novo rare genic CNV duplication count burden. Adjusted 

for LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-26. OR plots of average de novo rare genic CNV duplication size burden. 

Adjusted for LRRSD, sex, and 4 PCs. Stratified by binned sizes.  
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Figure 6-27. Miami plot of rare CNV gene-association tests between TS and unaffected 

siblings of ASD probands. -log10(PFDR) values are shown for deletions (below 
0) and duplications (above 0). Associations are ordered by genomic position 
(x-axis), colored by strength of association (grey – p ≥ 0.05, blue – PFDR ≥ 
0.05, and red – PFDR <0.05). Genes associating with PFDR < 0.01 are labeled 
directly on the plot.  
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Figure 6-28. Miami plot of rare CNV gene-association tests between TS and ASD 

probands. -log10(PFDR) values are shown for deletions (below 0) and 
duplications (above 0). Associations are ordered by genomic position (x-axis), 
colored by strength of association (grey – p ≥ 0.05, blue – PFDR ≥ 0.05, and 
red – PFDR <0.05). Genes associating with PFDR < 0.01 are labeled directly on 
the plot. 

 

 
Figure 6-29. Miami plot of rare CNV gene-association tests between ASD probands 

and their unaffected siblings. -log10(PFDR) values are shown for deletions 
(below 0) and duplications (above 0). Associations are ordered by genomic 
position (x-axis), colored by strength of association (grey – p ≥ 0.05, blue – 
PFDR ≥ 0.05, and red – PFDR <0.05). Genes associating with PFDR < 0.01 are 
labeled directly on the plot.  
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Table 6-7. Summary of significant genic associations, pFDR < 0.01. 

Gene Type NTS NASD NSIB ORTS-ASD ORTS-SIB 

ACAP2 Duplication 7 (0.57%) 2 (0.07%) 3 (0.11%) **8.64 *4.15 

ARID4B Deletion 7 (0.57%) 2 (0.07%) 2 (0.07%) **8.64 **8.30 

ARID4B Duplication 33 (2.60%) 2 (0.07%) 2 (0.07%) ****36.71 ****35.26 

CNTN6 Duplication 12 (0.96%) 3 (0.11%) 4 (0.14%) ***6.48 ***6.22 

FCHSD2 Duplication 18 (1.43%) 8 (0.29%) 8 (0.29%) ***4.86 ***4.67 

FH Deletion 25 (1.97%) 13 (0.47%) 12 (0.43%) ****4.01 ****4.50 

FHIT Deletion 23 (1.82%) 12 (0.43%) 11 (0.40%) ****4.32 ****4.15 

KCNMB2 Duplication 11 (0.88%) 2 (0.07%) 4 (0.14%) ***12.96 ***6.22 

LAMA5 Deletion 10 (0.80%) 19 (0.69%) 4 (0.14%) 1.08 **5.19 

NEK1 Duplication 16 (1.27%) 10 (0.36%) 18 (0.65%) **3.46 1.84 

NRXN1 Deletion 14 (1.11%) 18 (0.65%) 6 (0.22%) 1.68 **4.84 

PCNT Deletion 11 (0.88%) 12 (0.43%) 6 (0.22%) 2.16 **4.15 

PGM2 Deletion 5 (0.41%) 0 (0.00%) 0 (0.00%) **Inf **Inf 

PPP1R42 Duplication 7 (0.57%) 0 (0.00%) 0 (0.00%) ***Inf ***Inf 

PRPSAP1 Duplication 6 (0.49%) 3 (0.11%) 0 (0.00%) 3.24 **Inf 

SAR1B Duplication 6 (0.49%) 0 (0.00%) 0 (0.00%) **Inf **Inf 

SEC24A Duplication 6 (0.49%) 0 (0.00%) 2 (0.07%) **Inf *6.22 

SSTR5 Deletion 8 (0.64%) 5 (0.18%) 1 (0.03%) 2.88 **8.30 

TBCK Deletion 9 (0.72%) 4 (0.14%) 2 (0.07%) **5.40 **10.37 

TBP Duplication 11 (0.88%) 6 (0.22%) 11 (0.40%) **4.32 2.08 

TCF24 Duplication 7 (0.57%) 0 (0.00%) 0 (0.00%) ***Inf ***Inf 

TRABD Deletion 5 (0.41%) 3 (0.11%) 0 (0.00%) 3.24 **Inf 

TRPM1 Deletion 13 (1.03%) 2 (0.07%) 0 (0.00%) ****15.12 ****Inf 

TYW1B Duplication 23 (1.82%) 6 (0.22%) 7 (0.25%) ****8.64 ****6.22 

UGT2B10 Deletion 7 (0.57%) 4 (0.14%) 2 (0.07%) *4.32 **8.30 

ZNF260 Duplication 5 (0.41%) 0 (0.00%) 2 (0.07%) **Inf *6.22 

ZNF566 Duplication 5 (0.41%) 0 (0.00%) 2 (0.07%) **Inf *6.22 

Note: * pFDR < 0.05, ** pFDR < 0.01, *** pFDR < 0.001, **** pFDR < 0.0001. 
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CHAPTER 7  
CONCLUSIONS AND FUTURE DIRECTIONS 

NDDs are psychiatric that usually manifest early in childhood, and their severity 

can range from transient, mild impairments with minimal effect on everyday life, to 

severe disorders that drastically reduce quality of life and persist well into adulthood. 

TDs affect about 1% of the children and adolescents, whereas OCD affects about 2.3% 

of the children and adolescents (Zohar,1999; Scharf et al., 2012). As discussed in 

Chapter 2, these traits also have high heritability estimates based on family studies, yet 

little of that estimated genetic variation has been explored. Moreover, as discussed in 

Chapter 3, there is a substantial overlap between OCD and TD, as well as other 

disorders occurring in the childhood. Thus, OCRDs present a significant burden to 

children and adolescents, yet every little is known about their underlying genetic and 

biological mechanisms.  

In this dissertation, I attempt to better understand these disorders utilizing 

statistical genomic approaches focusing on genome-wide, high-throughput analyses of 

genetic data in children affected by these disorders. Namely, I aim to explore 

phenotypic relationships between OCD and related disorders, including TD, utilizing 

phenotype data in the ABCD Study (Chapter 4), followed by similar exploration utilizing 

genetic data in the ABCD Study (Chapter 5), and finally exploring structural genomic 

variation of TD and OCD in TAAICG and SPARK datasets (Chapter 6). 

As is the case with majority of projects investigating genomics of psychiatric 

disorder, sample sizes are crucial for successful pinpointing of associated variants and 

requirements for sample sizes usually stretch into tens to hundreds thousand. 

Nonetheless, while our modest sample size might not be sufficient for a powered 
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analysis to detect specific variants, they are sufficient for analysis of aggregate effects, 

like PRS or global burden. 

Phenotypic analysis has revealed that large datasets of self-assessed psychiatric 

disorder phenotypes might be unreliable, however this issue can be ameliorated by 

assessing said psychiatric disorder phenotypes on a longitudinal basis. Furthermore, 

expanding administered batteries to include symptom-level data collection, even if as 

global as CBCL, can help further validate these phenotypes. Specifically with OCD, 

consistent reports of OCD are strongly associated to consistent reporting of both 

obsessions and compulsions in the CBCL. Analysis has shown that compulsions tend to 

associate stronger, however this effect can be a result of the fact that compulsions are 

externalized symptoms whereas obsessions are internalized symptoms, meaning 

compulsions are more easily observed by parents and caregivers. Narrow definition of 

diagnoses has globally reduced the prevalence of psychiatric disorders and comorbidity 

rates, however, such reduction resulted in the patterns of prevalences and comorbidity 

rates like those reported in the literature. Similar effects were observed between OCD-

based and TD-based phenotypic analysis. There are several potential areas of 

improvements, including casting a wider net and examining additional datasets 

available in the ABCD Study, including medical history and medications used. 

Additionally, alternative, non-linear modelling, like deep learning or clustering-based 

methods could be used to leveraged in a machine learning approach to this project. 

As anticipated, my GWAS studies were underpowered to detect effects of 

individual variants, however some interesting aggregate effects were observed. Namely, 

emergence of the developmentally significant structural proteins in the GO analysis, 
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which have been previously identified as important functional group of proteins in 

OCRDs (Huang et al., 2017; Wang et al., 2018). Furthermore, PRS analysis within 

ABCD Study shows higher rates of predictive ability between nOCD and OCS, 

compared to bOCD and either nOCD or OCS, indicating that nOCD might be 

representative of true OCD genetic risk, whereas bOCD might be more representative 

of general anxiety or compulsive childhood psychopathology. PGC PRS analysis shows 

that nOCD tends to have better cross-disorder association, specifically with other NDD 

disorders compared to bnOCD, further corroborating my hypothesis that nOCD is the 

optimal proxy for OCD in the ABCD Study. Some potential improvements to this study 

include local ancestry based GWASes like Tractor approach (Atkinson et al., 2021) 

which could account for extensive rates of admixture present in the ABCD Study 

sample. Additionally, non-LMM approaches might be better for PRS and heritability 

analyses. While LMM are generally more powered to detect individual variants, the 

resulting effect size estimates are not easily integrated with PRS and heritability 

analysis algorithms. 

CNV analysis has shown a complicated relationship between ASD and TS. I 

have validated previous findings of risks conferred by NRXN1 deletions and CNTN6 

duplications. Unexpected trends in associations between TS and unaffected siblings of 

ASD probands, as well as ASD probands and their unaffected siblings, indicate 

pervasive batch effects with serious impact to power of global CNV burden tests. There 

are several potential reasons for existence of these batch effects, as well as different 

avenues to address them – all of which are under present consideration. Finally, low 

samples sizes, phenotype misclassification and heterogeneity, and complex genome-
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phenome relationships still represent the biggest obstacles in both TS and OCD realm, 

thus increased recruitment, rigorous phenotyping, and methodological innovation are 

likely to be the main driving forces behind OCDR genetics discoveries.



 

211 

LIST OF REFERENCES 

23andMe. (n.d.). Understanding Personal Genetics. 23andMe for Medical 
Professionals. Retrieved May 18, 2022, from https://medical.23andme.com/ 

Abdulkadir, M., Londono, D., Gordon, D., Fernandez, T. V., Brown, L. W., Cheon, K.-A., 
Coffey, B. J., Elzerman, L., Fremer, C., Fründt, O., Garcia-Delgar, B., Gilbert, D. 
L., Grice, D. E., Hedderly, T., Heyman, I., Hong, H. J., Huyser, C., Ibanez-
Gomez, L., Jakubovski, E., … Dietrich, A. (2017). Investigation of previously 
implicated genetic variants in chronic tic disorders: a transmission disequilibrium 
test approach. European Archives of Psychiatry and Clinical Neuroscience, 
268(3), 301–316. https://doi.org/10.1007/s00406-017-0808-8 

Abelson, J. F., Kwan, K. Y., O’Roak, B. J., Baek, D. Y., Stillman, A. A., Morgan, T. M., 
Mathews, C. A., Pauls, D. L., Rašin, M.-R., Gunel, M., Davis, N. R., Ercan-
Sencicek, A. G., Guez, D. H., Spertus, J. A., Leckman, J. F., Dure, L. S., Kurlan, 
R., Singer, H. S., Gilbert, D. L., … State, M. W. (2005). Sequence Variants in 
SLITRK1 Are Associated with Tourette’s Syndrome. Science, 310(5746), 317–
320. https://doi.org/10.1126/science.1116502 

Abramowitz, J. S., Deacon, B. J., Olatunji, B. O., Wheaton, M. G., Berman, N. C., 
Losardo, D., Timpano, K. R., McGrath, P. B., Riemann, B. C., Adams, T., 
Björgvinsson, T., Storch, E. A., & Hale, L. R. (2010). Assessment of obsessive-
compulsive symptom dimensions: Development and evaluation of the 
Dimensional Obsessive-Compulsive Scale. Psychological Assessment, 22(1), 
180–198. https://doi.org/10.1037/a0018260 

Alemany-Navarro, M., Cruz, R., Real, E., Segalàs, C., Bertolín, S., Baenas, I., 
Domènech, L., Rabionet, R., Carracedo, Á., Menchón, J. M., & Alonso, P. (2020). 
Exploring genetic variants in obsessive compulsive disorder severity: A GWAS 
approach. Journal of Affective Disorders, 267, 23–32. 
https://doi.org/10.1016/j.jad.2020.01.161 

Alemany-Navarro, M., Cruz, R., Real, E., Segalàs, C., Bertolín, S., Rabionet, R., 
Carracedo, Á., Menchón, J. M., & Alonso, P. (2020). Looking into the genetic 
bases of OCD dimensions: a pilot genome-wide association study. Translational 
Psychiatry, 10(1). https://doi.org/10.1038/s41398-020-0804-z 

Alexander, D. H., Novembre, J., & Lange, K. (2009). Fast model-based estimation of 
ancestry in unrelated individuals. Genome Research, 19(9), 1655–1664. 
https://doi.org/10.1101/gr.094052.109 

Allen, B., Bresnahan, J., Childers, L., Foster, I., Kandaswamy, G., Kettimuthu, R., 
Kordas, J., Link, M., Martin, S., Pickett, K., & Tuecke, S. (2012). Software as a 
service for data scientists. Communications of the ACM, 55(2), 81–88. 
https://doi.org/10.1145/2076450.2076468 



 

212 

Altemus, M., Murphy, D. L., Greenberg, B., & Lesch, K. P. (1996). Intact Coding Region 
of the Serotonin Transporter Gene in Obsessive-Compulsive Disorder. American 
Journal of Medical Genetics, 67(4), 409–411. 

American Psychiatric Association. (2013). Diagnostic and Statistical Manual of Mental 
Disorders (5th ed.). American Psychiatric Publishing. 

American Psychiatric Association. (2000). Diagnostic and Statistical Manual of Mental 
Disorders (4th ed.). American Psychiatric Publishing. 

Amersham Biosciences. (2002). Microarray Handbook. Amersham Biosciences. 

Anttila, V., Bulik-Sullivan, B., Finucane, H. K., Walters, R. K., Bras, J., Duncan, L., 
Escott-Price, V., Falcone, G. J., Gormley, P., Malik, R., Patsopoulos, N. A., 
Ripke, S., Wei, Z., Yu, D., Lee, P. H., Turley, P., Grenier-Boley, B., Chouraki, V., 
Kamatani, Y., … Neale, B. M. (2018). Analysis of shared heritability in common 
disorders of the brain. Science, 360(6395), eaap8757. 
https://doi.org/10.1126/science.aap8757 

Ashburner, M., Ball, C. A., Blake, J. A., Botstein, D., Butler, H., Cherry, J. M., Davis, A. 
P., Dolinski, K., Dwight, S. S., Eppig, J. T., Harris, M. A., Hill, D. P., Issel-Tarver, 
L., Kasarskis, A., Lewis, S., Matese, J. C., Richardson, J. E., Ringwald, M., 
Rubin, G. M., & Sherlock, G. (2000). Gene Ontology: tool for the unification of 
biology. Nature Genetics, 25(1), 25–29. https://doi.org/10.1038/75556 

Atkinson, E. G., Maihofer, A. X., Kanai, M., Martin, A. R., Karczewski, K. J., Santoro, M. 
L., Ulirsch, J. C., Kamatani, Y., Okada, Y., Finucane, H. K., Koenen, K. C., 
Nievergelt, C. M., Daly, M. J., & Neale, B. M. (2021). Tractor uses local ancestry 
to enable the inclusion of admixed individuals in GWAS and to boost power. 
Nature Genetics, 53(2), 195–204. https://doi.org/10.1038/s41588-020-00766-y 

Barr, C. L., Wigg, K. G., & Sandor, P. (1999). Catechol-O-methyltransferase and Gilles 
de la Tourette syndrome. Molecular Psychiatry, 4(5), 492–495. 
https://doi.org/10.1038/sj.mp.4000549 

Barr, C. L., Wigg, K. G., Zovko, E., Sandor, & Tsui, L. C. (1997). Linkage study of the 
dopamine D5 receptor gene and Gilles de la Tourette syndrome . American 
Journal of Human Genetics, 74(1), 58–61. 

Baurley, J. W., Edlund, C. K., Pardamean, C. I., Conti, D. V., & Bergen, A. W. (2016). 
Smokescreen: a targeted genotyping array for addiction research. BMC 
Genomics, 17(1), 145. https://doi.org/10.1186/s12864-016-2495-7 

Belloso, J. M., Bache, I., Guitart, M., Caballin, M. R., Halgren, C., Kirchhoff, M., Ropers, 
H.-H., Tommerup, N., & Tümer, Z. (2007). Disruption of the CNTNAP2 gene in a 
t(7;15) translocation family without symptoms of Gilles de la Tourette syndrome. 
European Journal of Human Genetics, 15(6), 711–713. 
https://doi.org/10.1038/sj.ejhg.5201824 



 

213 

Bertelsen, B., Melchior, L., Jensen, L. R., Groth, C., Glenthøj, B., Rizzo, R., Debes, N. 
M., Skov, L., Brøndum-Nielsen, K., Paschou, P., Silahtaroglu, A., & Tümer, Z. 
(2014). Intragenic deletions affecting two alternative transcripts of the IMMP2L 
gene in patients with Tourette syndrome. European Journal of Human Genetics, 
22(11), 1283–1289. https://doi.org/10.1038/ejhg.2014.24 

Bertelsen, B., Stefánsson, H., Riff Jensen, L., Melchior, L., Mol Debes, N., Groth, C., 
Skov, L., Werge, T., Karagiannidis, I., Tarnok, Z., Barta, C., Nagy, P., Farkas, L., 
Brøndum-Nielsen, K., Rizzo, R., Gulisano, M., Rujescu, D., Kiemeney, L. A., 
Tosato, S., … Tümer, Z. (2016). Association of AADAC Deletion and Gilles de la 
Tourette Syndrome in a Large European Cohort. Biological Psychiatry, 79(5), 
383–391. https://doi.org/10.1016/j.biopsych.2015.08.027 

Billett, E. A., Richter, M. A., King, N., Heils, A., Lesch, K. P., & Kennedy, J. L. (1997). 
Obsessive compulsive disorder, response to serotonin reuptake inhibitors and 
the serotonin transporter gene. Molecular Psychiatry, 2(5), 403–406. 
https://doi.org/10.1038/sj.mp.4000257 

Billett, E. A., Richter, M. A., Sam, F., Swinson, R. P., Dai, X.-Y., King, N., Badri, F., 
Sasaki, T., Buchanan, J. A., & Kennedy, J. L. (1998). Investigation of dopamine 
system genes in obsessive-compulsive disorder. Psychiatric Genetics, 8(3), 163–
170. https://doi.org/10.1097/00041444-199800830-00005 

Bjork, J. M., Straub, L. K., Provost, R. G., & Neale, M. C. (2017). The ABCD Study of 
Neurodevelopment: Identifying Neurocircuit Targets for Prevention and 
Treatment of Adolescent Substance Abuse. Current Treatment Options in 
Psychiatry, 4(2), 196–209. https://doi.org/10.1007/s40501-017-0108-y 

Bolton, D., Rijsdijk, F., O’Connor, T. G., Perrin, S., & Eley, T. C. (2006). Obsessive–
compulsive disorder, tics and anxiety in 6-year-old twins. Psychological Medicine, 
37(1), 39–48. https://doi.org/10.1017/s0033291706008816 

Brett, P M, Curtis, D., Robertson, M. M., & Gurling, H. M. (1995). Exclusion of the 5-
HT1A serotonin neuroreceptor and tryptophan oxygenase genes in a large British 
kindred multiply affected with Tourette’s syndrome, chronic motor tics, and 
obsessive-compulsive behavior. American Journal of Psychiatry, 152(3), 437–
440. https://doi.org/10.1176/ajp.152.3.437 

Brett, Peter M., Curtis, D., Robertson, M. M., & Gurling, H. M. D. (1995). The genetic 
susceptibility to Gilles de la Tourette Syndrome in a large multiple affected british 
kindred: Linkage analysis excludes a role for the genes coding for dopamine D1, 
D2, D3, D4, D5 receptors, dopamine beta hydroxylase, tyrosinase, and tyrosine 
hydroxylase. Biological Psychiatry, 37(8), 533–540. https://doi.org/10.1016/0006-
3223(94)00161-u 

Browne, H. A., Hansen, S. N., Buxbaum, J. D., Gair, S. L., Nissen, J. B., Nikolajsen, K. 
H., Schendel, D. E., Reichenberg, A., Parner, E. T., & Grice, D. E. (2015). 



 

214 

Familial Clustering of Tic Disorders and Obsessive-Compulsive Disorder. JAMA 
Psychiatry, 72(4), 359. https://doi.org/10.1001/jamapsychiatry.2014.2656 

Bulik-Sullivan, B., Finucane, H. K., Anttila, V., Gusev, A., Day, F. R., Loh, P.-R., 
Duncan, L., Perry, J. R. B., Patterson, N., Robinson, E. B., Daly, M. J., Price, A. 
L., & Neale, B. M. (2015). An atlas of genetic correlations across human 
diseases and traits. Nature Genetics, 47(11), 1236–1241. 
https://doi.org/10.1038/ng.3406 

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., 
Daly, M. J., Price, A. L., & Neale, B. M. (2015a). LD Score regression 
distinguishes confounding from polygenicity in genome-wide association studies. 
Nature Genetics, 47(3), 291–295. https://doi.org/10.1038/ng.3211 

Bulik-Sullivan, B. K., Loh, P.-R., Finucane, H. K., Ripke, S., Yang, J., Patterson, N., 
Daly, M. J., Price, A. L., & Neale, B. M. (2015b). LD Score regression 
distinguishes confounding from polygenicity in genome-wide association studies. 
Nature Genetics, 47(3), 291–295. https://doi.org/10.1038/ng.3211 

Buniello, A., MacArthur, J. A. L., Cerezo, M., Harris, L. W., Hayhurst, J., Malangone, C., 
McMahon, A., Morales, J., Mountjoy, E., Sollis, E., Suveges, D., Vrousgou, O., 
Whetzel, P. L., Amode, R., Guillen, J. A., Riat, H. S., Trevanion, S. J., Hall, P., 
Junkins, H., … Parkinson, H. (2018). The NHGRI-EBI GWAS Catalog of 
published genome-wide association studies, targeted arrays and summary 
statistics 2019. Nucleic Acids Research, 47(D1), D1005–D1012. 
https://doi.org/10.1093/nar/gky1120 

Burton, C. L., Lemire, M., Xiao, B., Corfield, E. C., Erdman, L., Bralten, J., Poelmans, 
G., Yu, D., Shaheen, S.-M., Goodale, T., Sinopoli, V. M., Soreni, N., Hanna, G. 
L., Fitzgerald, K. D., Rosenberg, D., Nestadt, G., Paterson, A. D., Strug, L. J., 
Schachar, R. J., … Zai, G. (2021). Genome-wide association study of pediatric 
obsessive-compulsive traits: shared genetic risk between traits and disorder. 
Translational Psychiatry, 11(1). https://doi.org/10.1038/s41398-020-01121-9 

Cappi, C, Brentani, H., Lima, L., Sanders, S. J., Zai, G., Diniz, B. J., Reis, V. N. S., 
Hounie, A. G., Conceição do Rosário, M., Mariani, D., Requena, G. L., Puga, R., 
Souza-Duran, F. L., Shavitt, R. G., Pauls, D. L., Miguel, E. C., & Fernandez, T. V. 
(2016). Whole-exome sequencing in obsessive-compulsive disorder identifies 
rare mutations in immunological and neurodevelopmental pathways. 
Translational Psychiatry, 6(3), e764–e764. https://doi.org/10.1038/tp.2016.30 

Cappi, Carolina, Oliphant, M. E., Péter, Z., Zai, G., Conceição do Rosário, M., Sullivan, 
C. A. W., Gupta, A. R., Hoffman, E. J., Virdee, M., Olfson, E., Abdallah, S. B., 
Willsey, A. J., Shavitt, R. G., Miguel, E. C., Kennedy, J. L., Richter, M. A., & 
Fernandez, T. V. (2020). De Novo Damaging DNA Coding Mutations Are 
Associated With Obsessive-Compulsive Disorder and Overlap With Tourette’s 



 

215 

Disorder and Autism. Biological Psychiatry, 87(12), 1035–1044. 
https://doi.org/10.1016/j.biopsych.2019.09.029 

Carey, G., & Gottesman, I. I. (1981). Twin and family studies of anxiety, phobic and 
obsessive disorder. In D. Klein & J. Rabkin, Anxiety: New Research and 
Changing Concepts (pp. 117–136). Raven Press. 

Carter, N. P. (2007). Methods and strategies for analyzing copy number variation using 
DNA microarrays. Nature Genetics, 39(S7), S16–S21. 
https://doi.org/10.1038/ng2028 

Cavallini, M. C., Di Bella, D., Catalano, M., & Bellodi, L. (2000). An association study 
between 5-HTTLPR polymorphism, COMT polymorphism, and Tourette’s 
syndrome. Psychiatry Research, 97(2-3), 93–100. https://doi.org/10.1016/s0165-
1781(00)00220-1 

Chabane, N., Delorme, R., Millet, B., Mouren, M.-C., Leboyer, M., & Pauls, D. (2005). 
Early-onset obsessive-compulsive disorder: a subgroup with a specific clinical 
and familial pattern? Journal of Child Psychology and Psychiatry, 46(8), 881–
887. https://doi.org/10.1111/j.1469-7610.2004.00382.x 

Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). 
Second-generation PLINK: rising to the challenge of larger and richer datasets. 
GigaScience, 4(1). https://doi.org/10.1186/s13742-015-0047-8 

Chen, H., Wang, C., Conomos, M. P., Stilp, A. M., Li, Z., Sofer, T., Szpiro, A. A., Chen, 
W., Brehm, J. M., Celedón, J. C., Redline, S., Papanicolaou, G. J., Thornton, T. 
A., Laurie, C. C., Rice, K., & Lin, X. (2016). Control for Population Structure and 
Relatedness for Binary Traits in Genetic Association Studies via Logistic Mixed 
Models. The American Journal of Human Genetics, 98(4), 653–666. 
https://doi.org/10.1016/j.ajhg.2016.02.012 

Chen, Z., Boehnke, M., Wen, X., & Mukherjee, B. (2021). Revisiting the genome-wide 
significance threshold for common variant GWAS. G3 Genes|Genomes|Genetics, 
11(2). https://doi.org/10.1093/g3journal/jkaa056 

Choi, S. W., Mak, T. S.-H., & O’Reilly, P. F. (2020). Tutorial: a guide to performing 
polygenic risk score analyses. Nature Protocols, 15(9), 2759–2772. 
https://doi.org/10.1038/s41596-020-0353-1 

Chou, I.-C., Tsai, C.-H., Wan, L., Hsu, Y.-A., & Tsai, F.-J. (2007). Association study 
between Tourette’s syndrome and polymorphisms of noradrenergic genes 
(ADRA2A, ADRA2C). Psychiatric Genetics, 17(6), 359. 
https://doi.org/10.1097/ypg.0b013e3281ac2358 

Claudio‐Campos, K., Stevens, D., Koo, S., Valko, A., Bienvenu, O. J., Budman, C. B., 
Cath, D. C., Darrow, S., Geller, D., Goes, F. S., Grados, M. A., Greenberg, B. D., 
Greenberg, E., Hirschtritt, M. E., Illmann, C., Ivankovic, F., King, R. A., Knowles, 



 

216 

J. A., Krasnow, J., … Mathews, C. A. (2021). Is Persistent Motor or Vocal Tic 
Disorder a Milder Form of Tourette Syndrome? Movement Disorders, 36(8), 
1899–1910. https://doi.org/10.1002/mds.28593 

Colella, S., Yau, C., Taylor, J. M., Mirza, G., Butler, H., Clouston, P., Bassett, A. S., 
Seller, A., Holmes, C. C., & Ragoussis, J. (2007). QuantiSNP: an Objective 
Bayes Hidden-Markov Model to detect and accurately map copy number 
variation using SNP genotyping data. Nucleic Acids Research, 35(6), 2013–
2025. https://doi.org/10.1093/nar/gkm076 

Comings, D. E., Muhleman, D., Dietz, G., Dino, M., LeGro, R., & Gade, R. (1993). 
Association between Tourette’s syndrome and homozygosity at the dopamine D3 
receptor gene. The Lancet, 341(906). 

Conomos, M. P., Miller, M. B., & Thornton, T. A. (2015). Robust Inference of Population 
Structure for Ancestry Prediction and Correction of Stratification in the Presence 
of Relatedness. Genetic Epidemiology, 39(4), 276–293. 
https://doi.org/10.1002/gepi.21896 

Conomos, M. P., Reiner, A. P., Weir, B. S., & Thornton, T. A. (2016). Model-free 
Estimation of Recent Genetic Relatedness. The American Journal of Human 
Genetics, 98(1), 127–148. https://doi.org/10.1016/j.ajhg.2015.11.022 

Coombes, B. J., Ploner, A., Bergen, S. E., & Biernacka, J. M. (2020). A principal 
component approach to improve association testing with polygenic risk scores. 
Genetic Epidemiology, 44(7), 676–686. https://doi.org/10.1002/gepi.22339 

Coughlin, C. R., Scharer, G. H., & Shaikh, T. H. (2012). Clinical impact of copy number 
variation analysis using high-resolution microarray technologies: advantages, 
limitations and concerns. Genome Medicine, 4(10), 80. 
https://doi.org/10.1186/gm381 

Crawford, F. C., Ait-Ghezala, G., Morris, M., Sutcliffe, M. J., Hauser, R. A., Silver, A. A., 
& Mullan, M. J. (2003). Translocation breakpoint in two unrelated Tourette 
syndrome cases, within a region previously linked to the disorder. Human 
Genetics, 113(2), 154–161. https://doi.org/10.1007/s00439-003-0942-4 

Cuker, A., State, M. W., King, R. A., Davis, N., & Ward, D. C. (2004). Candidate locus 
for Gilles de la Tourette syndrome/obsessive compulsive disorder/chronic tic 
disorder at 18q22. American Journal of Medical Genetics, 30A(1), 37–39. 
https://doi.org/10.1002/ajmg.a.30066 

Cukier, H. N., Dueker, N. D., Slifer, S. H., Lee, J. M., Whitehead, P. L., Lalanne, E., 
Leyva, N., Konidari, I., Gentry, R. C., Hulme, W. F., Booven, D. V., Mayo, V., 
Hofmann, N. K., Schmidt, M. A., Martin, E. R., Haines, J. L., Cuccaro, M. L., 
Gilbert, J. R., & Pericak-Vance, M. A. (2014). Exome sequencing of extended 
families with autism reveals genes shared across neurodevelopmental and 



 

217 

neuropsychiatric disorders. Molecular Autism, 5(1). https://doi.org/10.1186/2040-
2392-5-1 

Darrow, S. M., Hirschtritt, M. E., Davis, L. K., Illmann, C., Osiecki, L., Grados, M., 
Sandor, P., Dion, Y., King, R., Pauls, D., Budman, C. L., Cath, D. C., Greenberg, 
E., Lyon, G. J., Yu, D., McGrath, L. M., McMahon, W. M., Lee, P. C., Delucchi, K. 
L., … Mathews, C. A. (2017). Identification of Two Heritable Cross-Disorder 
Endophenotypes for Tourette Syndrome. American Journal of Psychiatry, 174(4), 
387–396. https://doi.org/10.1176/appi.ajp.2016.16020240 

Darrow, S. M., Illmann, C., Gauvin, C., Osiecki, L., Egan, C. A., Greenberg, E., Eckfield, 
M., Hirschtritt, M. E., Pauls, D. L., Batterson, J. R., Berlin, C. M., Malaty, I. A., 
Woods, D. W., Scharf, J. M., & Mathews, C. A. (2015). Web-based phenotyping 
for Tourette Syndrome: Reliability of common co-morbid diagnoses. Psychiatry 
Research, 228(3), 816–825. https://doi.org/10.1016/j.psychres.2015.05.017 

Davey Smith, G., & Ebrahim, S. (2003). ‘Mendelian randomization’: can genetic 
epidemiology contribute to understanding environmental determinants of 
disease?*. International Journal of Epidemiology, 32(1), 1–22. 
https://doi.org/10.1093/ije/dyg070 

de Bakker, P. I. W., Ferreira, M. A. R., Jia, X., Neale, B. M., Raychaudhuri, S., & Voight, 
B. F. (2008). Practical aspects of imputation-driven meta-analysis of genome-
wide association studies. Human Molecular Genetics, 17(R2), R122–R128. 
https://doi.org/10.1093/hmg/ddn288 

Delaneau, O., Zagury, J.-F., Robinson, M. R., Marchini, J. L., & Dermitzakis, E. T. 
(2019). Accurate, scalable and integrative haplotype estimation. Nature 
Communications, 10(1), 5436. https://doi.org/10.1038/s41467-019-13225-y 

Demontis, D., Walters, R. K., Martin, J., Mattheisen, M., Als, T. D., Agerbo, E., 
Baldursson, G., Belliveau, R., Bybjerg-Grauholm, J., Bækvad-Hansen, M., 
Cerrato, F., Chambert, K., Churchhouse, C., Dumont, A., Eriksson, N., Gandal, 
M., Goldstein, J. I., Grasby, K. L., Grove, J., … Neale, B. M. (2019). Discovery of 
the first genome-wide significant risk loci for attention deficit/hyperactivity 
disorder. Nature Genetics, 51, 63–75. https://doi.org/10.1038/s41588-018-0269-7 

Dey, R., & Lee, S. (2019). Asymptotic properties of principal component analysis and 
shrinkage-bias adjustment under the generalized spiked population model. 
Journal of Multivariate Analysis, 173, 145–164. 
https://doi.org/10.1016/j.jmva.2019.02.007 

Díaz-Anzaldúa, A, Joober, R., Rivière, J.-B., Dion, Y., Lespérance, P., Richer, F., 
Chouinard, S., & Rouleau, G. A. (2004). Tourette syndrome and dopaminergic 
genes: a family-based association study in the French Canadian founder 
population. Molecular Psychiatry, 9(3), 272–277. 
https://doi.org/10.1038/sj.mp.4001411 



 

218 

Díaz-Anzaldúa, Adriana, Rivière, J.-B., Dubé, M.-P., Joober, R., Saint-Onge, J., Dion, 
Y., Lespérance, P., Richer, F., Chouinard, S., & Rouleau, G. A. (2005). 
Chromosome 11-q24 region in Tourette syndrome: Association and linkage 
disequilibrium study in the French Canadian population. American Journal of 
Medical Genetics Part A, 138A(3), 225–228. 
https://doi.org/10.1002/ajmg.a.30928 

Diskin, S. J., Li, M., Hou, C., Yang, S., Glessner, J., Hakonarson, H., Bucan, M., Maris, 
J. M., & Wang, K. (2008). Adjustment of genomic waves in signal intensities from 
whole-genome SNP genotyping platforms. Nucleic Acids Research, 36(19), 
e126–e126. https://doi.org/10.1093/nar/gkn556 

do Rosario-Campos, M. C., Leckman, J. F., Curi, M., Quatrano, S., Katsovitch, L., 
Miguel, E. C., & Pauls, D. L. (2005). A family study of early-onset obsessive-
compulsive disorder. American Journal of Medical Genetics Part B: 
Neuropsychiatric Genetics, 136B(1), 92–97. https://doi.org/10.1002/ajmg.b.30149 

Durinck, S., Moreau, Y., Kasprzyk, A., Davis, S., De Moor, B., Brazma, A., & Huber, W. 
(2005). BioMart and Bioconductor: a powerful link between biological databases 
and microarray data analysis. Bioinformatics, 21(16), 3439–3440. 
https://doi.org/10.1093/bioinformatics/bti525 

Durinck, Steffen, Spellman, P. T., Birney, E., & Huber, W. (2009). Mapping identifiers for 
the integration of genomic datasets with the R/Bioconductor package biomaRt. 
Nature Protocols, 4(8), 1184–1191. https://doi.org/10.1038/nprot.2009.97 

Eapen, V., Pauls, D. L., & Robertson, M. M. (1993). Evidence for Autosomal Dominant 
Transmission in Tourette’s Syndrome. British Journal of Psychiatry, 162(5), 593–
596. https://doi.org/10.1192/bjp.162.5.593 

Eley, T. C., Bolton, D., O’Connor, T. G., Perrin, S., Smith, P., & Plomin, R. (2003). A 
twin study of anxiety-related behaviours in pre-school children. Journal of Child 
Psychology and Psychiatry, 44(7), 945–960. https://doi.org/10.1111/1469-
7610.00179 

Ercan-Sencicek, A. G., Stillman, A. A., Ghosh, A. K., Bilguvar, K., O’Roak, B. J., Mason, 
C. E., Abbott, T., Gupta, A., King, R. A., Pauls, D. L., Tischfield, J. A., Heiman, G. 
A., Singer, H. S., Gilbert, D. L., Hoekstra, P. J., Morgan, T. M., Loring, E., 
Yasuno, K., Fernandez, T., … State, M. W. (2010). L-Histidine Decarboxylase 
and Tourette’s Syndrome. New England Journal of Medicine, 362(20), 1901–
1908. https://doi.org/10.1056/nejmoa0907006 

Euesden, J., Lewis, C. M., & O’Reilly, P. F. (2014). PRSice: Polygenic Risk Score 
software. Bioinformatics, 31(9), 1466–1468. 
https://doi.org/10.1093/bioinformatics/btu848 

Evans, L. M., Tahmasbi, R., Vrieze, S. I., Abecasis, G. R., Das, S., Gazal, S., Bjelland, 
D. W., de Candia, T. R., Goddard, M. E., Neale, B. M., Yang, J., Visscher, P. M., 



 

219 

& Keller, M. C. (2018). Comparison of methods that use whole genome data to 
estimate the heritability and genetic architecture of complex traits. Nature 
Genetics, 50(5), 737–745. https://doi.org/10.1038/s41588-018-0108-x 

Fernandez, T. V., Sanders, S. J., Yurkiewicz, I. R., Ercan-Sencicek, A. G., Kim, Y.-S., 
Fishman, D. O., Raubeson, M. J., Song, Y., Yasuno, K., Ho, W. S. C., Bilguvar, 
K., Glessner, J., Chu, S. H., Leckman, J. F., King, R. A., Gilbert, D. L., Heiman, 
G. A., Tischfield, J. A., Hoekstra, P. J., … State, M. W. (2012). Rare Copy 
Number Variants in Tourette Syndrome Disrupt Genes in Histaminergic 
Pathways and Overlap with Autism. Biological Psychiatry, 71(5), 392–402. 
https://doi.org/10.1016/j.biopsych.2011.09.034 

Foa, E. B., Huppert, J. D., Leiberg, S., Langner, R., Kichic, R., Hajcak, G., & Salkovskis, 
P. M. (2002). The Obsessive-Compulsive Inventory: Development and validation 
of a short version. Psychological Assessment, 14(4), 485–496. 
https://doi.org/10.1037/1040-3590.14.4.485 

Foa, E. B., Kozak, M. J., Salkovskis, P. M., Coles, M. E., & Amir, N. (1998). The 
validation of a new obsessive–compulsive disorder scale: The Obsessive–
Compulsive Inventory. Psychological Assessment, 10(3), 206–214. 
https://doi.org/10.1037/1040-3590.10.3.206 

Forstner, A. J., Awasthi, S., Wolf, C., Maron, E., Erhardt, A., Czamara, D., Eriksson, E., 
Lavebratt, C., Allgulander, C., Friedrich, N., Becker, J., Hecker, J., Rambau, S., 
Conrad, R., Geiser, F., McMahon, F. J., Moebus, S., Hess, T., Buerfent, B. C., … 
Schumacher, J. (2021). Genome-wide association study of panic disorder 
reveals genetic overlap with neuroticism and depression. Molecular Psychiatry, 
26(8), 4179–4190. https://doi.org/10.1038/s41380-019-0590-2 

Foster, I. (2011). Globus Online: Accelerating and Democratizing Science through 
Cloud-Based Services. IEEE Internet Computing, 15(3), 70–73. 
https://doi.org/10.1109/mic.2011.64 

Freedman, R., Lewis, D. A., Michels, R., Pine, D. S., Schultz, S. K., Tamminga, C. A., 
Gabbard, G. O., Gau, S. S.-F., Javitt, D. C., Oquendo, M. A., Shrout, P. E., Vieta, 
E., & Yager, J. (2013). The Initial Field Trials of DSM-5: New Blooms and Old 
Thorns. American Journal of Psychiatry, 170(1), 1–5. 
https://doi.org/10.1176/appi.ajp.2012.12091189 

Friel, P. B. (1973). Familial Incidence of Gilles de la Tourette’s Disease, with 
Observations on Aetiology and Treatment. British Journal of Psychiatry, 
122(571), 655–658. https://doi.org/10.1192/bjp.122.6.655 

Friis, R. H., & Sellers, T. (2020). Epidemiology for Public Health Practice (6th ed.). 
Jones & Bartlett Learning. 

Gazzellone, M. J., Zarrei, M., Burton, C. L., Walker, S., Uddin, M., Shaheen, S. M., 
Coste, J., Rajendram, R., Schachter, R. J., Colasanto, M., Hanna, G. L., 



 

220 

Rosenberg, D. R., Soreni, N., Fitzgerald, K. D., Marshall, C. R., Buchanan, J. A., 
Merico, D., Arnold, P. D., & Scherer, S. W. (2016). Uncovering obsessive-
compulsive disorder risk genes in a pediatric cohort by high-resolution analysis of 
copy number variation. Journal of Neurodevelopmental Disorders, 8(1). 
https://doi.org/10.1186/s11689-016-9170-9 

Gelernter, J., Kennedy, J. L., Grandy, D. K., Zhou, Q. Y., Civelli, Pauls, D. L., Pakstis, 
Kurlan, R., Sunahara, R. K., Niznik, H. B., O’Dowd, B., Seeman, P., & Kidd, K. K. 
(1993). Exclusion of close linkage of Tourette’s syndrome to D1 dopamine 
receptor. American Journal of Psychiatry, 150(3), 449–453. 
https://doi.org/10.1176/ajp.150.3.449 

Gene Ontology Consortium, Carbon, S., Douglass, E., Good, B. M., Unni, D. R., Harris, 
N. L., Mungall, C. J., Basu, S., Chisholm, R. L., Dodson, R. J., Hartline, E., Fey, 
P., Thomas, P. D., Albou, L.-P., Ebert, D., Kesling, M. J., Mi, H., Muruganujan, 
A., Huang, X., … Elser, J. (2021). The Gene Ontology resource: enriching a 
GOld mine. Nucleic Acids Research, 49(D1), D325–D334. 
https://doi.org/10.1093/nar/gkaa1113 

GeneCards (n.d.). RBFOX1 Gene Disorders. GeneCards. Retrieved June 30, 2022, 
from https://www.genecards.org/cgi-bin/carddisp.pl?gene=RBFOX1#diseases 

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 
shared controls. (2007). Nature, 447(7145), 661–678. 
https://doi.org/10.1038/nature05911 

Glessner, J. T., Hou, X., Zhong, C., Zhang, J., Khan, M., Brand, F., Krawitz, P., 
Sleiman, P. M. A., Hakonarson, H., & Wei, Z. (2021). DeepCNV: a deep learning 
approach for authenticating copy number variations. Briefings in Bioinformatics, 
22(5). https://doi.org/10.1093/bib/bbaa381 

Gogarten, S. M., Bhangale, T., Conomos, M. P., Laurie, C. A., McHugh, C. P., Painter, 
I., Zheng, X., Crosslin, D. R., Levine, D., Lumley, T., Nelson, S. C., Rice, K., 
Shen, J., Swarnkar, R., Weir, B. S., & Laurie, C. C. (2012). GWASTools: an 
R/Bioconductor package for quality control and analysis of genome-wide 
association studies. Bioinformatics, 28(24), 3329–3331. 
https://doi.org/10.1093/bioinformatics/bts610 

Gogarten, Stephanie M, Sofer, T., Chen, H., Yu, C., Brody, J. A., Thornton, T. A., Rice, 
K. M., & Conomos, M. P. (2019). Genetic association testing using the GENESIS 
R/Bioconductor package. Bioinformatics, 35(24), 5346–5348. 
https://doi.org/10.1093/bioinformatics/btz567 

Goodman, W. K. (1989). The Yale-Brown Obsessive Compulsive Scale. Archives of 
General Psychiatry, 46(11), 1006. 
https://doi.org/10.1001/archpsyc.1989.01810110048007 



 

221 

Grove, J., Ripke, S., Als, T. D., Mattheisen, M., Walters, R. K., Won, H., Pallesen, J., 
Agerbo, E., Andreassen, O. A., Anney, R., Awashti, S., Belliveau, R., Bettella, F., 
Buxbaum, J. D., Bybjerg-Grauholm, J., Bækvad-Hansen, M., Cerrato, F., 
Chambert, K., Christensen, J. H., … Børglum, A. D. (2019). Identification of 
common genetic risk variants for autism spectrum disorder. Nature Genetics, 
51(3), 431–444. https://doi.org/10.1038/s41588-019-0344-8 

Grünblatt, E., Oneda, B., Ekici, A. B., Ball, J., Geissler, J., Uebe, S., Romanos, M., 
Rauch, A., & Walitza, S. (2017). High resolution chromosomal microarray 
analysis in paediatric obsessive-compulsive disorder. BMC Medical Genomics, 
10(1). https://doi.org/10.1186/s12920-017-0299-5 

Guo, W., Samuels, J. F., Wang, Y., Cao, H., Ritter, M., Nestadt, P. S., Krasnow, J., 
Greenberg, B. D., Fyer, A. J., McCracken, J. T., Geller, D. A., Murphy, D. L., 
Knowles, J. A., Grados, M. A., Riddle, M. A., Rasmussen, S. A., McLaughlin, N. 
C., Nurmi, E. L., Askland, K. D., … Shugart, Y. Y. (2017). Polygenic risk score 
and heritability estimates reveals a genetic relationship between ASD and OCD. 
European Neuropsychopharmacology, 27(7), 657–666. 
https://doi.org/10.1016/j.euroneuro.2017.03.011 

Hamza, T. H., Zabetian, C. P., Tenesa, A., Laederach, A., Montimurro, J., Yearout, D., 
Kay, D. M., Doheny, K. F., Paschall, J., Pugh, E., Kusel, V. I., Collura, R., 
Roberts, J., Griffith, A., Samii, A., Scott, W. K., Nutt, J., Factor, S. A., & Payami, 
H. (2010). Common genetic variation in the HLA region is associated with late-
onset sporadic Parkinson’s disease. Nature Genetics, 42(9), 781–785. 
https://doi.org/10.1038/ng.642 

Hanna, G. L., Fingerlin, T. E., Himle, J. A., & Boehnke, M. (2005). Complex Segregation 
Analysis of Obsessive-Compulsive Disorder in Families with Pediatric Probands. 
Human Heredity, 60(1), 1–9. https://doi.org/10.1159/000087135 

Hanna, G. L., Veenstra-VanderWeele, J., Cox, N. J., Boehnke, M., Himle, J. A., Curtis, 
G. C., Leventhal, B. L., & Cook, E. H. (2002). Genome-wide linkage analysis of 
families with obsessive-compulsive disorder ascertained through pediatric 
probands. American Journal of Medical Genetics, 114(5), 541–552. 
https://doi.org/10.1002/ajmg.10519 

Hasstedt, S. J., Leppert, M., Filloux, F., van de Wetering, B. J., & McMahon, W. M. 
(1995). Intermediate inheritance of Tourette syndrome, assuming assortative 
mating. American Journal of Human Genetics, 57(3), 682–689. 

Hastings, P. J., Lupski, J. R., Rosenberg, S. M., & Ira, G. (2009). Mechanisms of 
change in gene copy number. Nature Reviews Genetics, 10(8), 551–564. 
https://doi.org/10.1038/nrg2593 

He, F., Zheng, Y., Huang, H.-H., Cheng, Y.-H., & Wang, C.-Y. (2015). Association 
between Tourette Syndrome and the Dopamine D3 Receptor Gene Rs6280. 



 

222 

Chinese Medical Journal, 128(5), 654–658. https://doi.org/10.4103/0366-
6999.151665 

He, X., Sanders, S. J., Liu, L., De Rubeis, S., Lim, E. T., Sutcliffe, J. S., Schellenberg, 
G. D., Gibbs, R. A., Daly, M. J., Buxbaum, J. D., State, M. W., Devlin, B., & 
Roeder, K. (2013). Integrated Model of De Novo and Inherited Genetic Variants 
Yields Greater Power to Identify Risk Genes. PLoS Genetics, 9(8), e1003671. 
https://doi.org/10.1371/journal.pgen.1003671 

Hebebrand, J., Nöthen, M., Lehmkuhl, G., Poustka, F., Schmidt, M., Propping, P., 
Remschmidt, H., Comings, D., Muhleman, D., Dietz, G., Dino, M., Legro, R., & 
Gade, R. (1993). Tourette’s syndrome and homozygosity for the dopamine D3 
receptor gene. The Lancet, 341(8858), 1483–1484. https://doi.org/10.1016/0140-
6736(93)90931-6 

Hill, T., & Unckless, R. L. (2019). A Deep Learning Approach for Detecting Copy 
Number Variation in Next-Generation Sequencing Data. G3 
Genes|Genomes|Genetics, 9(11), 3575–3582. 
https://doi.org/10.1534/g3.119.400596 

Hirschtritt, M. E., Darrow, S. M., Illmann, C., Osiecki, L., Grados, M., Sandor, P., Dion, 
Y., King, R. A., Pauls, D. L., Budman, C. L., Cath, D. C., Greenberg, E., Lyon, G. 
J., Yu, D., McGrath, L. M., McMahon, W. M., Lee, P. C., Delucchi, K. L., Scharf, 
J. M., & Mathews, C. A. (2016). Social disinhibition is a heritable subphenotype 
of tics in Tourette syndrome. Neurology, 87(5), 497–504. 
https://doi.org/10.1212/wnl.0000000000002910 

Hirschtritt, M. E., Lee, P. C., Pauls, D. L., Dion, Y., Grados, M. A., Illmann, C., King, R. 
A., Sandor, P., McMahon, W. M., Lyon, G. J., Cath, D. C., Kurlan, R., Robertson, 
M. M., Osiecki, L., Scharf, J. M., & Mathews, C. A. (2015). Lifetime Prevalence, 
Age of Risk, and Genetic Relationships of Comorbid Psychiatric Disorders in 
Tourette Syndrome. JAMA Psychiatry, 72(4), 325. 
https://doi.org/10.1001/jamapsychiatry.2014.2650 

Hooper, S. D., Johansson, A. C., Tellgren-Roth, C., Stattin, E.-L., Dahl, N., Cavelier, L., 
& Feuk, L. (2012). Genome-wide sequencing for the identification of 
rearrangements associated with Tourette syndrome and obsessive-compulsive 
disorder. BMC Medical Genetics, 13(123). https://doi.org/10.1186/1471-2350-13-
123 

Howard, D. M., Adams, M. J., Clarke, T.-K., Hafferty, J. D., Gibson, J., Shirali, M., 
Coleman, J. R. I., Hagenaars, S. P., Ward, J., Wigmore, E. M., Alloza, C., Shen, 
X., Barbu, M. C., Xu, E. Y., Whalley, H. C., Marioni, R. E., Porteous, D. J., 
Davies, G., Deary, I. J., … McIntosh, A. M. (2019). Genome-wide meta-analysis 
of depression identifies 102 independent variants and highlights the importance 
of the prefrontal brain regions. Nature Neuroscience, 22(3), 343–352. 
https://doi.org/10.1038/s41593-018-0326-7 



 

223 

Howie, B. N., Donnelly, P., & Marchini, J. (2009). A Flexible and Accurate Genotype 
Imputation Method for the Next Generation of Genome-Wide Association 
Studies. PLoS Genetics, 5(6), e1000529. 
https://doi.org/10.1371/journal.pgen.1000529 

Huang, A. Y., Yu, D., Davis, L. K., Sul, J. H., Tsetsos, F., Ramensky, V., Zelaya, I., 
Ramos, E. M., Osiecki, L., Chen, J. A., McGrath, L. M., Illmann, C., Sandor, P., 
Barr, C. L., Grados, M., Singer, H. S., Nöthen, M. M., Hebebrand, J., King, R. A., 
… Smit, J. (2017). Rare Copy Number Variants in NRXN1 and CNTN6 Increase 
Risk for Tourette Syndrome. Neuron, 94(6), 1101-1111.e7. 
https://doi.org/10.1016/j.neuron.2017.06.010 

Hudziak, J. J., van Beijsterveldt, C. E. M., Althoff, R. R., Stanger, C., Rettew, D. C., 
Nelson, E. C., Todd, R. D., Bartels, M., & Boomsma, D. I. (2004). Genetic and 
Environmental Contributions to the Child Behavior ChecklistObsessive-
Compulsive Scale. Archives of General Psychiatry, 61(6), 608. 
https://doi.org/10.1001/archpsyc.61.6.608 

Huisman‐van Dijk, H. M., Matthijssen, S. J. M. A., Stockmann, R. T. S., Fritz, A. V., & 
Cath, D. C. (2019). Effects of comorbidity on Tourette’s tic severity and quality of 
life. Acta Neurologica Scandinavica, 140(6), 390–398. 
https://doi.org/10.1111/ane.13155 

Hyde, T. M., Aaronson, B. A., Randolph, C., Rickler, K. C., & Weinberger, D. R. (1992). 
Relationship of birth weight to the phenotypic expression of Gilles de la 
Tourette’s syndrome in monozygotic twins. Neurology, 42(3), 652–652. 
https://doi.org/10.1212/wnl.42.3.652 

Iafrate, A. J., Feuk, L., Rivera, M. N., Listewnik, M. L., Donahoe, P. K., Qi, Y., Scherer, 
S. W., & Lee, C. (2004). Detection of large-scale variation in the human genome. 
Nature Genetics, 36(9), 949–951. https://doi.org/10.1038/ng1416 

Illumina. (2014). DNA Copy Number and Loss of Heterozygosity Analysis Algorithms. 
Illumina. 
https://www.illumina.com/documents/products/technotes/technote_cnv_algorithm
s.pdf 

Illumina. (2017). Infinium® Global Screening Array-24 v1.0. Illumina. 
https://grcf.jhmi.edu/wp-content/uploads/2017/12/infinium-commercial-gsa-data-
sheet-370-2016-016.pdf 

Illumina. (2020a). GenomeStudio v2.0.5. Illumina. 
https://www.illumina.com/techniques/microarrays/array-data-analysis-
experimental-design/genomestudio.html 

Illumina. (2020b). InfiniumTM Global Screening Array-24 v3.0 BeadChip. Illumina. 
https://www.illumina.com/content/dam/illumina-



 

224 

marketing/documents/products/datasheets/infinium-global-screening-array-data-
sheet-370-2016-016.pdf 

Illumna. (n.d.). Infinium Omni5-4 Kit. Illumina. Retrieved May 18, 2022, from 
https://www.illumina.com/products/by-type/microarray-kits/infinium-omni5-
quad.html 

Inouye, E. (1965). Similar and Dissimilar Manifestations of Obsessive-compulsive 
Neurosis in Monozygotic Twins. American Journal of Psychiatry, 121(12), 1171–
1175. https://doi.org/10.1176/ajp.121.12.1171 

IOCDF-GC & OCGAS. (2017). Revealing the complex genetic architecture of 
obsessive–compulsive disorder using meta-analysis. Molecular Psychiatry, 23(5), 
1181–1188. https://doi.org/10.1038/mp.2017.154 

Jankovic, J., & Deng, H. (2007). Candidate Locus for Chorea and Tic Disorders at 15q? 
Pediatric Neurology, 37(1), 70–73. 
https://doi.org/10.1016/j.pediatrneurol.2007.02.015 

Karagiannidis, I., Dehning, S., Sandor, P., Tarnok, Z., Rizzo, R., Wolanczyk, T., 
Madruga-Garrido, M., Hebebrand, J., Nöthen, M. M., Lehmkuhl, G., Farkas, L., 
Nagy, P., Szymanska, U., Anastasiou, Z., Stathias, V., Androutsos, C., Tsironi, 
V., Koumoula, A., Barta, C., … Paschou, P. (2013). Support of the histaminergic 
hypothesis in Tourette Syndrome: association of the histamine decarboxylase 
gene in a large sample of families. Journal of Medical Genetics, 50(11), 760–764. 
https://doi.org/10.1136/jmedgenet-2013-101637 

Karczewski, K. J., Francioli, L. C., Tiao, G., Cummings, B. B., Alföldi, J., Wang, Q., 
Collins, R. L., Laricchia, K. M., Ganna, A., Birnbaum, D. P., Gauthier, L. D., 
Brand, H., Solomonson, M., Watts, N. A., Rhodes, D., Singer-Berk, M., England, 
E. M., Seaby, E. G., Kosmicki, J. A., … MacArthur, D. G. (2020). The mutational 
constraint spectrum quantified from variation in 141,456 humans. Nature, 
581(7809), 434–443. https://doi.org/10.1038/s41586-020-2308-7 

Kaufman, J., Kobak, K., Birmaher, B., & de Lacy, N. (2021). KSADS-COMP 
Perspectives on Child Psychiatric Diagnostic Assessment and Treatment 
Planning. Journal of the American Academy of Child &amp; Adolescent 
Psychiatry, 60(5), 540–542. https://doi.org/10.1016/j.jaac.2020.08.470 

Kerbeshian, J., Severud, R., Burd, L., & Larson, L. (2000). Peek-a-boo fragile site at 
16d associated with Tourette syndrome, bipolar disorder, autistic disorder, and 
mental retardation. American Journal of Medical Genetics, 96(1), 69–73. 
https://doi.org/10.1002/(sici)1096-8628(20000207)96:1<69::aid-ajmg14>3.0.co;2-
5 

Kessler, R. C., Berglund, P., Demler, O., Jin, R., Merikangas, K. R., & Walters, E. E. 
(2005). Lifetime Prevalence and Age-of-Onset Distributions of DSM-IV Disorders 



 

225 

in the National Comorbidity Survey Replication. Archives of General Psychiatry, 
62(6), 593. https://doi.org/10.1001/archpsyc.62.6.593 

Khramtsova, E. A., Heldman, R., Derks, E. M., Yu, D., Davis, L. K., & Stranger, B. E. 
(2019). Sex differences in the genetic architecture of obsessive-compulsive 
disorder. American Journal of Medical Genetics Part B: Neuropsychiatric 
Genetics, 180(6), 351–364. https://doi.org/10.1002/ajmg.b.32687 

Kjeldbjerg, M. L., & Clausen, L. (2021). Prevalence of binge-eating disorder among 
children and adolescents: a systematic review and meta-analysis. European 
Child &amp; Adolescent Psychiatry. https://doi.org/10.1007/s00787-021-01850-2 

Lawson-Yuen, A., Saldivar, J.-S., Sommer, S., & Picker, J. (2008). Familial deletion 
within NLGN4 associated with autism and Tourette syndrome. European Journal 
of Human Genetics, 16(5), 614–618. https://doi.org/10.1038/sj.ejhg.5202006 

Leckman, J. F., Sholomskas, D., Thompson, W. D., Belanger, A., & Weissman, M. M. 
(1982). Best Estimate of Lifetime Psychiatric Diagnosis. Archives of General 
Psychiatry, 39(8), 879. https://doi.org/10.1001/archpsyc.1982.04290080001001 

Lee, P. H., Anttila, V., Won, H., Feng, Y.-C. A., Rosenthal, J., Zhu, Z., Tucker-Drob, E. 
M., Nivard, M. G., Grotzinger, A. D., Posthuma, D., Wang, M. M.-J., Yu, D., Stahl, 
E. A., Walters, R. K., Anney, R. J. L., Duncan, L. E., Ge, T., Adolfsson, R., 
Banaschewski, T., … Smoller, J. W. (2019). Genomic Relationships, Novel Loci, 
and Pleiotropic Mechanisms across Eight Psychiatric Disorders. Cell, 179(7), 
1469-1482.e11. https://doi.org/10.1016/j.cell.2019.11.020 

Lee, S. H., Yang, J., Goddard, M. E., Visscher, P. M., & Wray, N. R. (2012). Estimation 
of pleiotropy between complex diseases using single-nucleotide polymorphism-
derived genomic relationships and restricted maximum likelihood. Bioinformatics, 
28(19), 2540–2542. https://doi.org/10.1093/bioinformatics/bts474 

Lenane, M. C., Swedo, S. E., Leonard, H., Pauls, D. L., Sceery, W., & Rapoport, J. L. 
(1990). Psychiatric Disorders in First Degree Relatives of Children and 
Adolescents with Obsessive Compulsive Disorder. Journal of the American 
Academy of Child &amp; Adolescent Psychiatry, 29(3), 407–412. 
https://doi.org/10.1097/00004583-199005000-00012 

Lewien, C., Genuneit, J., Meigen, C., Kiess, W., & Poulain, T. (2021). Sleep-related 
difficulties in healthy children and adolescents. BMC Pediatrics, 21(1). 
https://doi.org/10.1186/s12887-021-02529-y 

Lewis. (1936). Problems of Obsessional Illness. Proceedings of the Royal Society of 
Medicine, 29(4), 325–336. 

Li, W., & Olivier, M. (2013). Current analysis platforms and methods for detecting copy 
number variation. Physiological Genomics, 45(1), 1–16. 
https://doi.org/10.1152/physiolgenomics.00082.2012 



 

226 

Li, Y., Willer, C., Sanna, S., & Abecasis, G. (2009). Genotype Imputation. Annual 
Review of Genomics and Human Genetics, 10(1), 387–406. 
https://doi.org/10.1146/annurev.genom.9.081307.164242 

Liu, S., Tian, M., He, F., Li, J., Xie, H., Liu, W., Zhang, Y., Zhang, R., Yi, M., Che, F., 
Ma, X., Zheng, Y., Deng, H., Wang, G., Chen, L., Sun, X., Xu, Y., Wang, J., 
Zang, Y., … Guan, J.-S. (2019). Mutations in ASH1L confer susceptibility to 
Tourette syndrome. Molecular Psychiatry, 25(2), 476–490. 
https://doi.org/10.1038/s41380-019-0560-8 

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, 
G., Garcia, F., Young, N., Foster, B., Moser, M., Karasik, E., Gillard, B., Ramsey, 
K., Sullivan, S., Bridge, J., Magazine, H., Syron, J., … Moore, H. F. (2013). The 
Genotype-Tissue Expression (GTEx) project. Nature Genetics, 45(6), 580–585. 
https://doi.org/10.1038/ng.2653 

Macé, A., Tuke, M. A., Beckmann, J. S., Lin, L., Jacquemont, S., Weedon, M. N., 
Reymond, A., & Kutalik, Z. (2016). New quality measure for SNP array based 
CNV detection. Bioinformatics, 32(21), 3298–3305. 
https://doi.org/10.1093/bioinformatics/btw477 

Malhotra, D., & Sebat, J. (2012). CNVs: Harbingers of a Rare Variant Revolution in 
Psychiatric Genetics. Cell, 148(6), 1223–1241. 
https://doi.org/10.1016/j.cell.2012.02.039 

Manchia, M., Cullis, J., Turecki, G., Rouleau, G. A., Uher, R., & Alda, M. (2013). The 
Impact of Phenotypic and Genetic Heterogeneity on Results of Genome Wide 
Association Studies of Complex Diseases. PLoS ONE, 8(10), e76295. 
https://doi.org/10.1371/journal.pone.0076295 

Manichaikul, A., Mychaleckyj, J. C., Rich, S. S., Daly, K., Sale, M., & Chen, W.-M. 
(2010). Robust relationship inference in genome-wide association studies. 
Bioinformatics, 26(22), 2867–2873. https://doi.org/10.1093/bioinformatics/btq559 

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J., 
McCarthy, M. I., Ramos, E. M., Cardon, L. R., Chakravarti, A., Cho, J. H., 
Guttmacher, A. E., Kong, A., Kruglyak, L., Mardis, E., Rotimi, C. N., Slatkin, M., 
Valle, D., Whittemore, A. S., … Visscher, P. M. (2009). Finding the missing 
heritability of complex diseases. Nature, 461(7265), 747–753. 
https://doi.org/10.1038/nature08494 

Mansueto, C. S., & Keuler, D. J. (2007). Tic or Compulsion? It’s Tourettic OCD. 
FOCUS, 5(3), 361–367. https://doi.org/10.1176/foc.5.3.foc361 

Marchini, J. (2019). Haplotype Estimation and Genotype Imputation. In D. J. Balding, I. 
Moltke, & J. Marioni, Handbook of Statistical Genomics (pp. 87–113). John Wiley 
& Sons Ltd. 



 

227 

Marchini, J., & Howie, B. (2010). Genotype imputation for genome-wide association 
studies. Nature Reviews Genetics, 11(7), 499–511. 
https://doi.org/10.1038/nrg2796 

Marshall, C. R., Howrigan, D. P., Merico, D., Thiruvahindrapuram, B., Wu, W., Greer, D. 
S., Antaki, D., Shetty, A., Holmans, P. A., Pinto, D., Gujral, M., Brandler, W. M., 
Malhotra, D., Wang, Z., Fajarado, K. V. F., Maile, M. S., Ripke, S., Agartz, I., 
Albus, M., … Sebat, J. (2016). Contribution of copy number variants to 
schizophrenia from a genome-wide study of 41,321 subjects. Nature Genetics, 
49(1), 27–35. https://doi.org/10.1038/ng.3725 

Mataix-Cols, D., Isomura, K., Pérez-Vigil, A., Chang, Z., Rück, C., Larsson, K. J., 
Leckman, J. F., Serlachius, E., Larsson, H., & Lichtenstein, P. (2015). Familial 
Risks of Tourette Syndrome and Chronic Tic Disorders. JAMA Psychiatry, 72(8), 
787. https://doi.org/10.1001/jamapsychiatry.2015.0627 

Mathews, C. A., Badner, J. A., Andresen, J. M., Sheppard, B., Himle, J. A., Grant, J. E., 
Williams, K. A., Chavira, D. A., Azzam, A., Schwartz, M., Reus, V. I., Kim, S. W., 
Cook, E. H., & Hanna, G. L. (2012). Genome-Wide Linkage Analysis of 
Obsessive-Compulsive Disorder Implicates Chromosome 1p36. Biological 
Psychiatry, 72(8), 629–636. https://doi.org/10.1016/j.biopsych.2012.03.037 

Mathews, C. A., & Grados, M. A. (2011). Familiality of Tourette Syndrome, Obsessive-
Compulsive Disorder, and Attention-Deficit/Hyperactivity Disorder: Heritability 
Analysis in a Large Sib-Pair Sample. Journal of the American Academy of Child 
&amp; Adolescent Psychiatry, 50(1), 46–54. 
https://doi.org/10.1016/j.jaac.2010.10.004 

Matsumoto, N., David, D. E., Johnson, E. W., Konecki, D., Burmester, J. K., Ledbetter, 
D. H., & Weber, J. L. (2000). Breakpoint sequences of an 1;8 translocation in a 
family with Gilles de la Tourette syndrome. European Journal of Human 
Genetics, 8(11), 875–883. https://doi.org/10.1038/sj.ejhg.5200549 

Mattheisen, M., Samuels, J. F., Wang, Y., Greenberg, B. D., Fyer, A. J., McCracken, J. 
T., Geller, D. A., Murphy, D. L., Knowles, J. A., Grados, M. A., Riddle, M. A., 
Rasmussen, S. A., McLaughlin, N. C., Nurmi, E. L., Askland, K. D., Qin, H.-D., 
Cullen, B. A., Piacentini, J., Pauls, D. L., … Nestadt, G. (2014). Genome-wide 
association study in obsessive-compulsive disorder: results from the OCGAS. 
Molecular Psychiatry, 20(3), 337–344. https://doi.org/10.1038/mp.2014.43 

McGrath, L. M., Yu, D., Marshall, C., Davis, L. K., Thiruvahindrapuram, B., Li, B., Cappi, 
C., Gerber, G., Wolf, A., Schroeder, F. A., Osiecki, L., O’Dushlaine, C., Kirby, A., 
Illmann, C., Haddad, S., Gallagher, P., Fagerness, J. A., Barr, C. L., Bellodi, L., 
… Scharf, J. M. (2014). Copy Number Variation in Obsessive-Compulsive 
Disorder and Tourette Syndrome: A Cross-Disorder Study. Journal of the 
American Academy of Child &amp; Adolescent Psychiatry, 53(8), 910–919. 
https://doi.org/10.1016/j.jaac.2014.04.022 



 

228 

Meisner, A., & Chatterjee, N. (2019). Disease Risk Models. In D. J. Balding, I. Moltke, & 
J. Marioni, Handbook of Statistical Genomics (pp. 815–841). John Wiley & Sons 
Ltd. 

Melchior, L., Bertelsen, B., Debes, N. M., Groth, C., Skov, L., Mikkelsen, J. D., 
Brøndum-Nielsen, K., & Tümer, Z. (2013). Microduplication of 15q13.3 and 
Xq21.31 in a family with tourette syndrome and comorbidities. American Journal 
of Medical Genetics Part B: Neuropsychiatric Genetics, 162B(8), 825–831. 
https://doi.org/10.1002/ajmg.b.32186 

Mérette, C., Brassard, A., Potvin, A., Bouvier, H., Rousseau, F., Émond, C., 
Bissonnette, L., Roy, M.-A., Maziade, M., Ott, J., & Caron, C. (2000). Significant 
Linkage for Tourette Syndrome in a Large French Canadian Family. The 
American Journal of Human Genetics, 67(4), 1008–1013. 
https://doi.org/10.1086/303093 

Merikangas, K. R., He, J., Burstein, M., Swanson, S. A., Avenevoli, S., Cui, L., Benjet, 
C., Georgiades, K., & Swendsen, J. (2010). Lifetime Prevalence of Mental 
Disorders in U.S. Adolescents: Results from the National Comorbidity Survey 
Replication–Adolescent Supplement (NCS-A). Journal of the American Academy 
of Child &amp; Adolescent Psychiatry, 49(10), 980–989. 
https://doi.org/10.1016/j.jaac.2010.05.017 

Mi, H., Muruganujan, A., Ebert, D., Huang, X., & Thomas, P. D. (2018). PANTHER 
version 14: more genomes, a new PANTHER GO-slim and improvements in 
enrichment analysis tools. Nucleic Acids Research, 47(D1), D419–D426. 
https://doi.org/10.1093/nar/gky1038 

Mullins, N., Forstner, A. J., O’Connell, K. S., Coombes, B., Coleman, J. R. I., Qiao, Z., 
Als, T. D., Bigdeli, T. B., Børte, S., Bryois, J., Charney, A. W., Drange, O. K., 
Gandal, M. J., Hagenaars, S. P., Ikeda, M., Kamitaki, N., Kim, M., Krebs, K., 
Panagiotaropoulou, G., … Andreassen, O. A. (2021). Genome-wide association 
study of more than 40,000 bipolar disorder cases provides new insights into the 
underlying biology. Nature Genetics, 53(6), 817–829. 
https://doi.org/10.1038/s41588-021-00857-4 

Murphy, D. L., Timpano, K. R., Wheaton, M. G., Greenberg, B. D., & Miguel, E. C. 
(2010). Obsessive-compulsive disorder and its related disorders: 
a                    reappraisal of obsessive-compulsive spectrum concepts. Dialogues 
in Clinical Neuroscience, 12(2), 131–148. 
https://doi.org/10.31887/dcns.2010.12.2/dmurphy 

Nag, A., Bochukova, E. G., Kremeyer, B., Campbell, D. D., Muller, H., Valencia-Duarte, 
A. V., Cardona, J., Rivas, I. C., Mesa, S. C., Cuartas, M., Garcia, J., Bedoya, G., 
Cornejo, W., Herrera, L. D., Romero, R., Fournier, E., Reus, V. I., Lowe, T. L., 
Farooqi, I. S., … Ruiz-Linares, A. (2013). CNV Analysis in Tourette Syndrome 



 

229 

Implicates Large Genomic Rearrangements in COL8A1 and NRXN1. PLoS ONE, 
8(3), e59061. https://doi.org/10.1371/journal.pone.0059061 

Nestadt, G., Lan, T., Samuels, J., Riddle, M., Bienvenu, O. J., Liang, K. Y., Hoehn-
Saric, R., Cullen, B., Grados, M., Beaty, T. H., & Shugart, Y. Y. (2000). Complex 
Segregation Analysis Provides Compelling Evidence for a Major Gene 
Underlying Obsessive-Compulsive Disorder and for Heterogeneity by Sex. The 
American Journal of Human Genetics, 67(6), 1611–1616. 
https://doi.org/10.1086/316898 

Nestadt, G., Wang, Y., Grados, M. A., Riddle, M. A., Greenberg, B. D., Knowles, J. A., 
Fyer, A. J., McCracken, J. T., Rauch, S. L., Murphy, D. L., Rasmussen, S. A., 
Cullen, B., Piacentini, J., Geller, D., Pauls, D., Bienvenu, O. J., Chen, Y., Liang, 
K. Y., Goes, F. S., … Chang, Y. C. (2011). Homeobox genes in obsessive‐
compulsive disorder. American Journal of Medical Genetics Part B: 
Neuropsychiatric Genetics, 159B(1), 53–60. https://doi.org/10.1002/ajmg.b.32001 

Nestadt, Gerald, Samuels, J., Riddle, M., Bienvenu, O. J., Liang, K.-Y., LaBuda, M., 
Walkup, J., Grados, M., & Hoehn-Saric, R. (2000). A Family Study of Obsessive-
compulsive Disorder. Archives of General Psychiatry, 57(4), 358. 
https://doi.org/10.1001/archpsyc.57.4.358 

NHGRI. (2020). Genome-Wide Association Studies Fact Sheet. Genome.Gov; National 
Human Genome Research Institute. https://www.genome.gov/about-
genomics/fact-sheets/Genome-Wide-Association-Studies-Fact-Sheet 

Nicolini, H., Cruz, C., Camarena, B., Orozco, B., Kennedy, J. L., King, N., Weissbecker, 
K., de la Fuente, J. R., & Sidenberg, D. (1996). DRD2, DRD3 and 5HT2A 
receptor genes polymorphisms in obsessive-compulsive disorder. Molecular 
Psychiatry, 1(6), 461–465. 

Nievergelt, C. M., Maihofer, A. X., Klengel, T., Atkinson, E. G., Chen, C.-Y., Choi, K. W., 
Coleman, J. R. I., Dalvie, S., Duncan, L. E., Gelernter, J., Levey, D. F., Logue, M. 
W., Polimanti, R., Provost, A. C., Ratanatharathorn, A., Stein, M. B., Torres, K., 
Aiello, A. E., Almli, L. M., … Koenen, K. C. (2019). International meta-analysis of 
PTSD genome-wide association studies identifies sex- and ancestry-specific 
genetic risk loci. Nature Communications, 10(1). https://doi.org/10.1038/s41467-
019-12576-w 

Nussbaum, R. L., McInnes, R. R., & Willard, H. F. (2016). Thompson & Thompson 
Genetics in Medicine. Elsevier Health Sciences. 

O’Donovan, M. C. (2015). What have we learned from the Psychiatric Genomics 
Consortium. World Psychiatry, 14(3), 291–293. 
https://doi.org/10.1002/wps.20270 

Osborn, I. (1999). Tormenting Thoughts and Secret Rituals: The Hidden Epidemic of 
Obsessive-Compulsive Disorder (1st ed.). Dell. 



 

230 

Otowa, T., Hek, K., Lee, M., Byrne, E. M., Mirza, S. S., Nivard, M. G., Bigdeli, T., 
Aggen, S. H., Adkins, D., Wolen, A., Fanous, A., Keller, M. C., Castelao, E., 
Kutalik, Z., der Auwera, S. V., Homuth, G., Nauck, M., Teumer, A., Milaneschi, 
Y., … Hettema, J. M. (2016). Meta-analysis of genome-wide association studies 
of anxiety disorders. Molecular Psychiatry, 21(10), 1391–1399. 
https://doi.org/10.1038/mp.2015.197 

Pardiñas, A. F., Holmans, P., Pocklington, A. J., Escott-Price, V., Ripke, S., Carrera, N., 
Legge, S. E., Bishop, S., Cameron, D., Hamshere, M. L., Han, J., Hubbard, L., 
Lynham, A., Mantripragada, K., Rees, E., MacCabe, J. H., McCarroll, S. A., 
Baune, B. T., Breen, G., … Walters, J. T. R. (2018). Common schizophrenia 
alleles are enriched in mutation-intolerant genes and in regions under strong 
background selection. Nature Genetics, 50(3), 381–389. 
https://doi.org/10.1038/s41588-018-0059-2 

Park, L. S., Burton, C. L., Dupuis, A., Shan, J., Storch, E. A., Crosbie, J., Schachar, R. 
J., & Arnold, P. D. (2016). The Toronto Obsessive-Compulsive Scale: 
Psychometrics of a Dimensional Measure of Obsessive-Compulsive Traits. 
Journal of the American Academy of Child &amp; Adolescent Psychiatry, 55(4), 
310-318.e4. https://doi.org/10.1016/j.jaac.2016.01.008 

Paschou, P., Feng, Y., Pakstis, A. J., Speed, W. C., DeMille, M. M., Kidd, J. R., Jaghori, 
B., Kurlan, R., Pauls, D. L., Sandor, P., Barr, C. L., & Kidd, K. K. (2004). 
Indications of Linkage and Association of Gilles de la Tourette Syndrome in Two 
Independent Family Samples: 17q25 Is a Putative Susceptibility Region. The 
American Journal of Human Genetics, 75(4), 545–560. 
https://doi.org/10.1086/424389 

Patel, C., Cooper-Charles, L., McMullan, D. J., Walker, J. M., Davison, V., & Morton, J. 
(2011). Translocation breakpoint at 7q31 associated with tics: further evidence 
for IMMP2L as a candidate gene for Tourette syndrome. European Journal of 
Human Genetics, 19(6), 634–639. https://doi.org/10.1038/ejhg.2010.238 

Pauls, D L, Alsobrook 2nd, J. P., Goodman, W., Rasmussen, S., & Leckman, J. F. 
(1995). A family study of obsessive-compulsive disorder. American Journal of 
Psychiatry, 152(1), 76–84. https://doi.org/10.1176/ajp.152.1.76 

Pauls, David L. (2003). An update on the genetics of Gilles de la Tourette syndrome. 
Journal of Psychosomatic Research, 55(1), 7–12. https://doi.org/10.1016/s0022-
3999(02)00586-x 

Pauls, David L. (2010). The genetics of obsessive-compulsive disorder: a review. 
Dialogues in Clinical Neuroscience, 12(2), 149–163. 
https://doi.org/10.31887/dcns.2010.12.2/dpauls 

Pauls, David L., & Leckman, J. F. (1986). The Inheritance of Gilles de la Tourette’s 
Syndrome and Associated Behaviors. New England Journal of Medicine, 
315(16), 993–997. https://doi.org/10.1056/nejm198610163151604 



 

231 

Pauls, David L., Raymond, C. L., Stevenson, J. M., & Leckman, J. F. (1991). A Family 
Study of Gilles de la Tourette Syndrome. American Journal of Human Genetics, 
48(1), 154–163. 

Petek, E., Windpassinger, C., Vincent, J. B., Cheung, J., Boright, A. P., Scherer, S. W., 
Kroisel, P. M., & Wagner, K. (2001). Disruption of a Novel Gene (IMMP2L) by a 
Breakpoint in 7q31 Associated with Tourette Syndrome. The American Journal of 
Human Genetics, 68(4), 848–858. https://doi.org/10.1086/319523 

PGC. (n.d.). Psychiatric Genomics Consortium | Psychiatric Genomics Consortium. 
Psychiatric Genomics Consortium; https://www.facebook.com/PGCgenetics/. 
Retrieved May 20, 2022, from https://www.med.unc.edu/pgc/ 

Pies, R. (2008). Maimonides and Depression. American Journal of Psychiatry, 165(8), 
1050–1051. https://doi.org/10.1176/appi.ajp.2008.08040502 

Pounraja, V. K., Jayakar, G., Jensen, M., Kelkar, N., & Girirajan, S. (2019). A machine-
learning approach for accurate detection of copy number variants from exome 
sequencing. Genome Research, 29(7), 1134–1143. 
https://doi.org/10.1101/gr.245928.118 

Price, R. A. (1985). A Twin Study of Tourette Syndrome. Archives of General 
Psychiatry, 42(8), 815. https://doi.org/10.1001/archpsyc.1985.01790310077011 

Qi, Y., Zheng, Y., Li, Z., Liu, Z., & Xiong, L. (2019). Genetic Studies of Tic Disorders and 
Tourette Syndrome. Methods in Molecular Biology, 2011, 547–571. 
https://doi.org/10.1007/978-1-4939-9554-7_32 

Qi, Y., Zheng, Y., Li, Z., & Xiong, L. (2017). Progress in Genetic Studies of Tourette’s 
Syndrome. Brain Sciences, 7(10), 134. https://doi.org/10.3390/brainsci7100134 

R Core Team. (2013). R: A language and environment for statistical computing. 
R  Foundation for Statistical Computing. http://www.R-project.org 

Reese, H. E., Scahill, L., Peterson, A. L., Crowe, K., Woods, D. W., Piacentini, J., 
Walkup, J. T., & Wilhelm, S. (2014). The Premonitory Urge to Tic: Measurement, 
Characteristics, and Correlates in Older Adolescents and Adults. Behavior 
Therapy, 45(2), 177–186. https://doi.org/10.1016/j.beth.2013.09.002 

Reynolds, T., Johnson, E. C., Huggett, S. B., Bubier, J. A., Palmer, R. H. C., Agrawal, 
A., Baker, E. J., & Chesler, E. J. (2020). Interpretation of psychiatric genome-
wide association studies with multispecies heterogeneous functional genomic 
data integration. Neuropsychopharmacology, 46(1), 86–97. 
https://doi.org/10.1038/s41386-020-00795-5 

Riggs, E. R., Andersen, E. F., Cherry, A. M., Kantarci, S., Kearney, H., Patel, A., Raca, 
G., Ritter, D. I., South, S. T., Thorland, E. C., Pineda-Alvarez, D., Aradhya, S., & 
Martin, C. L. (2020). Technical standards for the interpretation and reporting of 



 

232 

constitutional copy-number variants: a joint consensus recommendation of the 
American College of Medical Genetics and Genomics (ACMG) and the Clinical 
Genome Resource (ClinGen). Genetics in Medicine, 22(2), 245–257. 
https://doi.org/10.1038/s41436-019-0686-8 

Risch, N., & Merikangas, K. (1996). The Future of Genetic Studies of Complex Human 
Diseases. Science, 273(5281), 1516–1517. 
https://doi.org/10.1126/science.273.5281.1516 

Ritter, M. L., Guo, W., Samuels, J. F., Wang, Y., Nestadt, P. S., Krasnow, J., 
Greenberg, B. D., Fyer, A. J., McCracken, J. T., Geller, D. A., Murphy, D. L., 
Knowles, J. A., Grados, M. A., Riddle, M. A., Rasmussen, S. A., McLaughlin, N. 
C., Nurmi, E. L., Askland, K. D., Cullen, B., … Shugart, Y. Y. (2017). Genome 
Wide Association Study (GWAS) between Attention Deficit Hyperactivity Disorder 
(ADHD) and Obsessive Compulsive Disorder (OCD). Frontiers in Molecular 
Neuroscience, 10(83). https://doi.org/10.3389/fnmol.2017.00083 

Roach, J. C., Glusman, G., Hubley, R., Montsaroff, S. Z., Holloway, A. K., Mauldin, D. 
E., Srivastava, D., Garg, V., Pollard, K. S., Galas, D. J., Hood, L., & Smit, A. F. A. 
(2011). Chromosomal Haplotypes by Genetic Phasing of Human Families. The 
American Journal of Human Genetics, 89(3), 382–397. 
https://doi.org/10.1016/j.ajhg.2011.07.023 

Robertson, M. M., Shelley, B. P., Dalwai, S., Brewer, C., & Critchley, H. D. (2006). A 
patient with both Gilles de la Tourette’s syndrome and chromosome 22q11 
deletion syndrome: clue to the genetics of Gilles de la Tourette’s syndrome? 
Journal of Psychosomatic Research, 61(3), 365–368. 
https://doi.org/10.1016/j.jpsychores.2006.06.011 

Rosario-Campos, M. C., Miguel, E. C., Quatrano, S., Chacon, P., Ferrao, Y., Findley, 
D., Katsovich, L., Scahill, L., King, R. A., Woody, S. R., Tolin, D., Hollander, E., 
Kano, Y., & Leckman, J. F. (2006). The Dimensional Yale–Brown Obsessive–
Compulsive Scale (DY-BOCS): an instrument for assessing obsessive–
compulsive symptom dimensions. Molecular Psychiatry, 11(5), 495–504. 
https://doi.org/10.1038/sj.mp.4001798 

Rubinacci, S., Delaneau, O., & Marchini, J. (2020). Genotype imputation using the 
Positional Burrows Wheeler Transform. PLOS Genetics, 16(11), e1009049. 
https://doi.org/10.1371/journal.pgen.1009049 

Scharf, J M, Yu, D., Mathews, C. A., Neale, B. M., Stewart, S. E., Fagerness, J. A., 
Evans, P., Gamazon, E., Edlund, C. K., Service, S. K., Tikhomirov, A., Osiecki, 
L., Illmann, C., Pluzhnikov, A., Konkashbaev, A., Davis, L. K., Han, B., Crane, J., 
Moorjani, P., … Pauls, D. L. (2013). Genome-wide association study of 
Tourette’s syndrome. Molecular Psychiatry, 18(6), 721–728. 
https://doi.org/10.1038/mp.2012.69 



 

233 

Scharf, Jeremiah M., Miller, L. L., Mathews, C. A., & Ben-Shlomo, Y. (2012). Prevalence 
of Tourette Syndrome and Chronic Tics in the Population-Based Avon 
Longitudinal Study of Parents and Children Cohort. Journal of the American 
Academy of Child &amp; Adolescent Psychiatry, 51(2), 192-201.e5. 
https://doi.org/10.1016/j.jaac.2011.11.004 

Schena, M., Shalon, D., Davis, R. W., & Brown, P. O. (1995). Quantitative Monitoring of 
Gene Expression Patterns with a Complementary DNA Microarray. Science, 
270(5235), 467–470. https://doi.org/10.1126/science.270.5235.467 

Sebat, J., Lakshmi, B., Troge, J., Alexander, J., Young, J., Lundin, P., Månér, S., 
Massa, H., Walker, M., Chi, M., Navin, N., Lucito, R., Healy, J., Hicks, J., Ye, K., 
Reiner, A., Gilliam, T. C., Trask, B., Patterson, N., … Wigler, M. (2004). Large-
Scale Copy Number Polymorphism in the Human Genome. Science, 305(5683), 
525–528. https://doi.org/10.1126/science.1098918 

Seiser, E. L., & Innocenti, F. (2014). Hidden Markov Model-Based CNV Detection 
Algorithms for Illumina Genotyping Microarrays. Cancer Informatics, 13(7), 77–
83. https://doi.org/10.4137/cin.s16345 

Shaikh, T. H. (2017). Copy Number Variation Disorders. Current Genetic Medicine 
Reports, 5(4), 183–190. https://doi.org/10.1007/s40142-017-0129-2 

Sharma, E., Sharma, L. P., Balachander, S., Lin, B., Manohar, H., Khanna, P., Lu, C., 
Garg, K., Thomas, T. L., Au, A. C. L., Selles, R. R., Højgaard, D. R. M. A., 
Skarphedinsson, G., & Stewart, S. E. (2021). Comorbidities in Obsessive-
Compulsive Disorder Across the Lifespan: A Systematic Review and Meta-
Analysis. Frontiers in Psychiatry, 12. https://doi.org/10.3389/fpsyt.2021.703701 

Shelley, B. P., Robertson, M. M., & Turk, J. (2007). An individual with Gilles de la 
Tourette syndrome and Smith?Magenis microdeletion syndrome: is chromosome 
17p11.2 a candidate region for Tourette syndrome putative susceptibility genes? 
Journal of Intellectual Disability Research, 51(8), 620–624. 
https://doi.org/10.1111/j.1365-2788.2006.00943.x 

Shi, S., Yuan, N., Yang, M., Du, Z., Wang, J., Sheng, X., Wu, J., & Xiao, J. (2018). 
Comprehensive Assessment of Genotype Imputation Performance. Human 
Heredity, 83(3), 107–116. https://doi.org/10.1159/000489758 

Shugart, Y. Y., Samuels, J., Willour, V. L., Grados, M. A., Greenberg, B. D., Knowles, J. 
A., McCracken, J. T., Rauch, S. L., Murphy, D. L., Wang, Y., Pinto, A., Fyer, A. 
J., Piacentini, J., Pauls, D. L., Cullen, B., Page, J., Rasmussen, S. A., Bienvenu, 
O. J., Hoehn-Saric, R., … Nestadt, G. (2006). Genomewide linkage scan for 
obsessive-compulsive disorder: evidence for susceptibility loci on chromosomes 
3q, 7p, 1q, 15q, and 6q. Molecular Psychiatry, 11(8), 763–770. 
https://doi.org/10.1038/sj.mp.4001847 



 

234 

Simonic, I., Gericke, G. S., Ott, J., & Weber, J. L. (1998). Identification of Genetic 
Markers Associated with Gilles de la Tourette Syndrome in an Afrikaner 
Population. The American Journal of Human Genetics, 63(3), 839–846. 
https://doi.org/10.1086/302002 

Singer, H. S. (2000). Current issues in Tourette syndrome. Movement Disorders, 15(6), 
1051–1063. 

Smedley, D., Haider, S., Ballester, B., Holland, R., London, D., Thorisson, G., & 
Kasprzyk, A. (2009). BioMart – biological queries made easy. BMC Genomics, 
10(1), 22. https://doi.org/10.1186/1471-2164-10-22 

Sordo Vieira, L., Nguyen, B., Nutley, S. K., Bertolace, L., Ordway, A., Simpson, H., 
Zakrzewski, J., Jean Gilles, M. E., Nosheny, R., Weiner, M., Mackin, R. S., & 
Mathews, C. A. (2022). Self-reporting of psychiatric illness in an online patient 
registry is a good indicator of the existence of psychiatric illness. Journal of 
Psychiatric Research, 151, 34–41. 
https://doi.org/10.1016/j.jpsychires.2022.03.022 

SPARK Consortium. (2018). SPARK: A US Cohort of 50,000 Families to Accelerate 
Autism Research. Neuron, 97(3), 488–493. 
https://doi.org/10.1016/j.neuron.2018.01.015 

State, M. W., Greally, J. M., Cuker, A., Bowers, P. N., Henegariu, O., Morgan, T. M., 
Gunel, M., DiLuna, M., King, R. A., Nelson, C., Donovan, A., Anderson, G. M., 
Leckman, J. F., Hawkins, T., Pauls, D. L., Lifton, R. P., & Ward, D. C. (2003). 
Epigenetic abnormalities associated with a chromosome 18(q21-q22) inversion 
and a Gilles de la Tourette syndrome phenotype. Proceedings of the National 
Academy of Sciences, 100(8), 4684–4689. 
https://doi.org/10.1073/pnas.0730775100 

Stephens, Z. D., Lee, S. Y., Faghri, F., Campbell, R. H., Zhai, C., Efron, M. J., Iyer, R., 
Schatz, M. C., Sinha, S., & Robinson, G. E. (2015). Big Data: Astronomical or 
Genomical? PLOS Biology, 13(7), e1002195. 
https://doi.org/10.1371/journal.pbio.1002195 

Stewart, S. E., Yu, D., Scharf, J. M., Neale, B. M., Fagerness, J. A., Mathews, C. A., 
Arnold, P. D., Evans, P. D., Gamazon, E. R., Osiecki, L., McGrath, L., Haddad, 
S., Crane, J., Hezel, D., Illman, C., Mayerfeld, C., Konkashbaev, A., Liu, C., 
Pluzhnikov, A., … Pauls, D. L. (2013). Genome-wide association study of 
obsessive-compulsive disorder. Molecular Psychiatry, 18(7), 788–798. 
https://doi.org/10.1038/mp.2012.85 

Storch, E. A., Murphy, T. K., Bagner, D. M., Johns, N. B., Baumeister, A. L., Goodman, 
W. K., & Geffken, G. R. (2006). Reliability and validity of the Child Behavior 
Checklist Obsessive-Compulsive Scale. Journal of Anxiety Disorders, 20(4), 
473–485. https://doi.org/10.1016/j.janxdis.2005.06.002 



 

235 

Streiner, D. L., & Norman, G. R. (2011). Correction for Multiple Testing. CHEST, 140(1), 
16–18. https://doi.org/10.1378/chest.11-0523 

Strom, N. I., Soda, T., Mathews, C. A., & Davis, L. K. (2021). A dimensional perspective 
on the genetics of obsessive-compulsive disorder. Translational Psychiatry, 
11(1). https://doi.org/10.1038/s41398-021-01519-z 

Sullivan, L. M. (2017). Essentials of Biostatistics in Public Health (Essential Public 
Health) (3rd ed.). Jones & Bartlett Learning. 

Sullivan, P. F., Agrawal, A., Bulik, C. M., Andreassen, O. A., Børglum, A. D., Breen, G., 
Cichon, S., Edenberg, H. J., Faraone, S. V., Gelernter, J., Mathews, C. A., 
Nievergelt, C. M., Smoller, J. W., & O’Donovan, M. C. (2018). Psychiatric 
Genomics: An Update and an Agenda. American Journal of Psychiatry, 175(1), 
15–27. https://doi.org/10.1176/appi.ajp.2017.17030283 

Sun, N., Nasello, C., Deng, L., Wang, N., Zhang, Y., Xu, Z., Song, Z., Kwan, K., King, R. 
A., Pang, Z. P., Xing, J., Heiman, G. A., & Tischfield, J. A. (2017). The PNKD 
gene is associated with Tourette Disorder or Tic disorder in a multiplex family. 
Molecular Psychiatry, 23(6), 1487–1495. https://doi.org/10.1038/mp.2017.179 

Sundaram, S. K., Huq, A. M., Wilson, B. J., & Chugani, H. T. (2010). Tourette syndrome 
is associated with recurrent exonic copy number variants. Neurology, 74(20), 
1583–1590. https://doi.org/10.1212/wnl.0b013e3181e0f147 

Sundaram, Senthil K., Huq, A. M., Sun, Z., Yu, W., Bennett, L., Wilson, B. J., Behen, M. 
E., & Chugani, H. T. (2011). Exome sequencing of a pedigree with tourette 
syndrome or chronic tic disorder. Annals of Neurology, 69(5), 901–904. 
https://doi.org/10.1002/ana.22398 

TAAICG. (2007). Genome Scan for Tourette Disorder in Affected-Sibling-Pair and 
Multigenerational Families. The American Journal of Human Genetics, 80(2), 
265–272. https://doi.org/10.1086/511052 

Tarnok, Z., Ronai, Z., Gervai, J., Kereszturi, E., Gadoros, J., Sasvari‐Szekely, M., & 
Nemoda, Z. (2007). Dopaminergic candidate genes in Tourette syndrome: 
Association between tic severity and 3′ UTR polymorphism of the dopamine 
transporter gene. American Journal of Medical Genetics Part B: Neuropsychiatric 
Genetics, 144B(7), 900–905. https://doi.org/10.1002/ajmg.b.30517 

Terra. (n.d.). Terra. Terra. Retrieved June 9, 2022, from https://app.terra.bio 

The 1000 Genomes Project Consortium, Auton, A., Abecasis, G. R., Altshuler, D. M., 
Durbin, R. M., Abecasis, G. R., Bentley, D. R., Chakravarti, A., Clark, A. G., 
Donnelly, P., Eichler, E. E., Flicek, P., Gabriel, S. B., Gibbs, R. A., Green, E. D., 
Hurles, M. E., Knoppers, B. M., Korbel, J. O., Lander, E. S., … Abecasis, G. R. 
(2015). A global reference for human genetic variation. Nature, 526(7571), 68–
74. https://doi.org/10.1038/nature15393 



 

236 

Thompson, M., Comings, D. E., Feder, L., George, S. R., & O’Dowd, B. F. (1998). 
Mutation screening of the dopamine D1 receptor gene in Tourette’s syndrome 
and alcohol dependent patients. American Journal of Human Genetics, 81(3), 
241–244. 

Thygesen, J. H., Presman, A., Harju-Seppänen, J., Irizar, H., Jones, R., 
Kuchenbaecker, K., Lin, K., Alizadeh, B. Z., Austin-Zimmerman, I., Bartels-
Velthuis, A., Bhat, A., Bruggeman, R., Cahn, W., Calafato, S., Crespo-Facorro, 
B., de Haan, L., de Zwarte, S. M. C., Di Forti, M., Díez-Revuelta, Á., … Bramon, 
E. (2021). Genetic copy number variants, cognition and psychosis: a meta-
analysis and a family study. Molecular Psychiatry, 26(9), 5307–5319. 
https://doi.org/10.1038/s41380-020-0820-7 

Tienari, P. (1963). Psychiatrc illnesses in identical twins. Acta Psychiatrica 
Scandinavica, 39(171), 1–195. 

Townsend, L., Kobak, K., Kearney, C., Milham, M., Andreotti, C., Escalera, J., 
Alexander, L., Gill, M. K., Birmaher, B., Sylvester, R., Rice, D., Deep, A., & 
Kaufman, J. (2020). Development of Three Web-Based Computerized Versions 
of the Kiddie Schedule for Affective Disorders and Schizophrenia Child 
Psychiatric Diagnostic Interview: Preliminary Validity Data. Journal of the 
American Academy of Child &amp; Adolescent Psychiatry, 59(2), 309–325. 
https://doi.org/10.1016/j.jaac.2019.05.009 

Tsetsos, F., Yu, D., Sul, J. H., Huang, A. Y., Illmann, C., Osiecki, L., Darrow, S. M., 
Hirschtritt, M. E., Greenberg, E., Muller-Vahl, K. R., Stuhrmann, M., Dion, Y., 
Rouleau, G. A., Aschauer, H., Stamenkovic, M., Schlögelhofer, M., Sandor, P., 
Barr, C. L., Grados, M. A., … Zinner, S. (2021). Synaptic processes and immune-
related pathways implicated in Tourette syndrome. Translational Psychiatry, 
11(1), 56. https://doi.org/10.1038/s41398-020-01082-z 

Tsuang, M. T., Tohen, M., & Joones, P. B. (2011). Textbook of Psychiatric 
Epidemiology (3rd ed.). Wiley-Blackwell. 

Uffelmann, E., Huang, Q. Q., Munung, N. S., de Vries, J., Okada, Y., Martin, A. R., 
Martin, H. C., Lappalainen, T., & Posthuma, D. (2021). Genome-wide association 
studies. Nature Reviews Methods Primers, 1(59). https://doi.org/10.1038/s43586-
021-00056-9 

Vadgama, N., Pittman, A., Simpson, M., Nirmalananthan, N., Murray, R., Yoshikawa, T., 
De Rijk, P., Rees, E., Kirov, G., Hughes, D., Fitzgerald, T., Kristiansen, M., 
Pearce, K., Cerveira, E., Zhu, Q., Zhang, C., Lee, C., Hardy, J., & Nasir, J. 
(2019). De novo single-nucleotide and copy number variation in discordant 
monozygotic twins reveals disease-related genes. European Journal of Human 
Genetics, 27(7), 1121–1133. https://doi.org/10.1038/s41431-019-0376-7 

Verbanck, M., Chen, C.-Y., Neale, B., & Do, R. (2018). Detection of widespread 
horizontal pleiotropy in causal relationships inferred from Mendelian 



 

237 

randomization between complex traits and diseases. Nature Genetics, 50(5), 
693–698. https://doi.org/10.1038/s41588-018-0099-7 

Verkerk, A. J. M. H., Mathews, C. A., Joosse, M., Eussen, B. H. J., Heutink, P., & 
Oostra, B. A. (2003). Cntnap2 is disrupted in a family with gilles de la tourette 
syndrome and obsessive compulsive disorder. Genomics, 82(1), 1–9. 
https://doi.org/10.1016/s0888-7543(03)00097-1 

Visscher, P. M., Hemani, G., Vinkhuyzen, A. A. E., Chen, G.-B., Lee, S. H., Wray, N. R., 
Goddard, M. E., & Yang, J. (2014). Statistical Power to Detect Genetic 
(Co)Variance of Complex Traits Using SNP Data in Unrelated Samples. PLoS 
Genetics, 10(4), e1004269. https://doi.org/10.1371/journal.pgen.1004269 

Visscher, P. M., Wray, N. R., Zhang, Q., Sklar, P., McCarthy, M. I., Brown, M. A., & 
Yang, J. (2017). 10 Years of GWAS Discovery: Biology, Function, and 
Translation. The American Journal of Human Genetics, 101(1), 5–22. 
https://doi.org/10.1016/j.ajhg.2017.06.005 

Walkup, J. T., LaBuda, M. C., Singer, H. S., Brown, J., Riddle, M. A., & Hurko, O. 
(1996). Family study and segregation analysis of Tourette syndrome: evidence 
for a mixed model of inheritance. American Journal of Human Genetics, 59(3), 
684–693. 

Wand, H., Lambert, S. A., Tamburro, C., Iacocca, M. A., O’Sullivan, J. W., Sillari, C., 
Kullo, I. J., Rowley, R., Dron, J. S., Brockman, D., Venner, E., McCarthy, M. I., 
Antoniou, A. C., Easton, D. F., Hegele, R. A., Khera, A. V., Chatterjee, N., 
Kooperberg, C., Edwards, K., … Wojcik, G. L. (2021). Improving reporting 
standards for polygenic scores in risk prediction studies. Nature, 591(7849), 211–
219. https://doi.org/10.1038/s41586-021-03243-6 

Wang, K., Chen, Z., Tadesse, M. G., Glessner, J., Grant, S. F. A., Hakonarson, H., 
Bucan, M., & Li, M. (2008). Modeling genetic inheritance of copy number 
variations. Nucleic Acids Research, 36(21), e138–e138. 
https://doi.org/10.1093/nar/gkn641 

Wang, K., Li, M., Hadley, D., Liu, R., Glessner, J., Grant, S. F. A., Hakonarson, H., & 
Bucan, M. (2007). PennCNV: An integrated hidden Markov model designed for 
high-resolution copy number variation detection in whole-genome SNP 
genotyping data. Genome Research, 17(11), 1665–1674. 
https://doi.org/10.1101/gr.6861907 

Wang, S., Mandell, J. D., Kumar, Y., Sun, N., Morris, M. T., Arbelaez, J., Nasello, C., 
Dong, S., Duhn, C., Zhao, X., Yang, Z., Padmanabhuni, S. S., Yu, D., King, R. 
A., Dietrich, A., Khalifa, N., Dahl, N., Huang, A. Y., Neale, B. M., … Yu, D. 
(2018). De Novo Sequence and Copy Number Variants Are Strongly Associated 
with Tourette Disorder and Implicate Cell Polarity in Pathogenesis. Cell Reports, 
24(13), 3441-3454.e12. https://doi.org/10.1016/j.celrep.2018.08.082 



 

238 

Watson, H. J., Yilmaz, Z., Thornton, L. M., Hübel, C., Coleman, J. R. I., Gaspar, H. A., 
Bryois, J., Hinney, A., Leppä, V. M., Mattheisen, M., Medland, S. E., Ripke, S., 
Yao, S., Giusti-Rodríguez, P., Hanscombe, K. B., Purves, K. L., Adan, R. A. H., 
Alfredsson, L., Ando, T., … Bulik, C. M. (2019). Genome-wide association study 
identifies eight risk loci and implicates metabo-psychiatric origins for anorexia 
nervosa. Nature Genetics, 51(8), 1207–1214. https://doi.org/10.1038/s41588-
019-0439-2 

Weissbecker, K., Baxter, L., Schwartz, J., Sparkes, R. S., & Spence, M. A. (1989). 
Linkage analysis of obsessive compulsive disorder. Cytogenetics and Cell 
Genetics, 51(1105). 

Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L., François, R., 
Grolemund, G., Hayes, A., Henry, L., Hester, J., Kuhn, M., Pedersen, T., Miller, 
E., Bache, S., Müller, K., Ooms, J., Robinson, D., Seidel, D., Spinu, V., … Yutani, 
H. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 
1686. https://doi.org/10.21105/joss.01686 

Wigginton, J. E., Cutler, D. J., & Abecasis, G. R. (2005). A Note on Exact Tests of 
Hardy-Weinberg Equilibrium. The American Journal of Human Genetics, 76(5), 
887–893. https://doi.org/10.1086/429864 

Willsey, A. J., Fernandez, T. V., Yu, D., King, R. A., Dietrich, A., Xing, J., Sanders, S. J., 
Mandell, J. D., Huang, A. Y., Richer, P., Smith, L., Dong, S., Samocha, K. E., 
Neale, B. M., Coppola, G., Mathews, C. A., Tischfield, J. A., Scharf, J. M., State, 
M. W., … Yu, D. (2017). De Novo Coding Variants Are Strongly Associated with 
Tourette Disorder. Neuron, 94(3), 486-499.e9. 
https://doi.org/10.1016/j.neuron.2017.04.024 

Woody, S. R., Steketee, G., & Chambless, D. L. (1995). Reliability and validity of the 
Yale-Brown Obsessive-Compulsive Scale. Behaviour Research and Therapy, 
33(5), 597–605. https://doi.org/10.1016/0005-7967(94)00076-v 

WTCCC. (2007). Genome-wide association study of 14,000 cases of seven common 
diseases and 3,000 shared controls. Nature, 447(7145), 661–678. 
https://doi.org/10.1038/nature05911 

Yang, J., Lee, S. H., Goddard, M. E., & Visscher, P. M. (2011). GCTA: A Tool for 
Genome-wide Complex Trait Analysis. The American Journal of Human 
Genetics, 88(1), 76–82. https://doi.org/10.1016/j.ajhg.2010.11.011 

Yang, J., Zeng, J., Goddard, M. E., Wray, N. R., & Visscher, P. M. (2017). Concepts, 
estimation and interpretation of SNP-based heritability. Nature Genetics, 49(9), 
1304–1310. https://doi.org/10.1038/ng.3941 

Yang, Z., Wu, H., Lee, P. H., Tsetsos, F., Davis, L. K., Yu, D., Lee, S. H., Dalsgaard, S., 
Haavik, J., Barta, C., Zayats, T., Eapen, V., Wray, N. R., Devlin, B., Daly, M., 
Neale, B., Børglum, A. D., Crowley, J. J., Scharf, J., … Paschou, P. (2021). 



 

239 

Investigating Shared Genetic Basis Across Tourette Syndrome and Comorbid 
Neurodevelopmental Disorders Along the Impulsivity-Compulsivity Spectrum. 
Biological Psychiatry, 90(5), 317–327. 
https://doi.org/10.1016/j.biopsych.2020.12.028 

Yilmaz, Z., Halvorsen, M., Bryois, J., Yu, D., Thornton, L. M., Zerwas, S., Micali, N., 
Moessner, R., Burton, C. L., Zai, G., Erdman, L., Kas, M. J., Arnold, P. D., Davis, 
L. K., Knowles, J. A., Breen, G., Scharf, J. M., Nestadt, G., Mathews, C. A., … 
Crowley, J. J. (2018). Examination of the shared genetic basis of anorexia 
nervosa and obsessive–compulsive disorder. Molecular Psychiatry, 25(9), 2036–
2046. https://doi.org/10.1038/s41380-018-0115-4 

Yorston, G., & Hindley, N. (1998). Study of a nervous disorder characterized by motor 
incoordination with echolalia and coprolalia. History of Psychiatry, 19(33), 097–
101. https://doi.org/10.1177/0957154x9800903307 

Young, M. E. (2010). Comparison of Diagnostic Interviews for Children Accessing 
Outpatient Mental Health Services. (Publication No. osu1274748739) [Doctoral 
dissertation, Ohio State University]. 

Yu, D., Mathews, C. A., Scharf, J. M., Neale, B. M., Davis, L. K., Gamazon, E. R., 
Derks, E. M., Evans, P., Edlund, C. K., Crane, J., Fagerness, J. A., Osiecki, L., 
Gallagher, P., Gerber, G., Haddad, S., Illmann, C., McGrath, L. M., Mayerfeld, C., 
Arepalli, S., … Pauls, D. L. (2015). Cross-Disorder Genome-Wide Analyses 
Suggest a Complex Genetic Relationship Between Tourette’s Syndrome and 
OCD. American Journal of Psychiatry, 172(1), 82–93. 
https://doi.org/10.1176/appi.ajp.2014.13101306 

Yu, D., Sul, J. H., Tsetsos, F., Nawaz, M. S., Huang, A. Y., Zelaya, I., Illmann, C., 
Osiecki, L., Darrow, S. M., Hirschtritt, M. E., Greenberg, E., Muller-Vahl, K. R., 
Stuhrmann, M., Dion, Y., Rouleau, G., Aschauer, H., Stamenkovic, M., 
Schlögelhofer, M., Sandor, P., … Scharf, J. M. (2019). Interrogating the Genetic 
Determinants of Tourette’s Syndrome and Other Tic Disorders Through Genome-
Wide Association Studies. American Journal of Psychiatry, 176(3), 217–227. 
https://doi.org/10.1176/appi.ajp.2018.18070857 

Yuan, A., Wang, Z., Xu, W., Ding, Q., Zhao, Y., Han, J., & Sun, J. (2020). A Rare Novel 
CLCN2 Variation and Risk of Gilles de la Tourette Syndrome: Whole-Exome 
Sequencing in a Multiplex Family and a Follow-Up Study in a Chinese 
Population. Frontiers in Psychiatry, 11, 543911. 
https://doi.org/10.3389/fpsyt.2020.543911 

Zarrei, M., MacDonald, J. R., Merico, D., & Scherer, S. W. (2015). A copy number 
variation map of the human genome. Nature Reviews Genetics, 16(3), 172–183. 
https://doi.org/10.1038/nrg3871 



 

240 

Zhang, D., Dey, R., & Lee, S. (2020). Fast and robust ancestry prediction using principal 
component analysis. Bioinformatics, 36(11), 3439–3446. 
https://doi.org/10.1093/bioinformatics/btaa152 

Zhang, L., Bai, W., Yuan, N., & Du, Z. (2019). Comprehensively benchmarking 
applications for detecting copy number variation. PLOS Computational Biology, 
15(5), e1007069. https://doi.org/10.1371/journal.pcbi.1007069 

Zhao, X., Wang, S., Hao, J., Zhu, P., Zhang, X., & Wu, M. (2020). A Whole-Exome 
Sequencing Study of Tourette Disorder in a Chinese Population. DNA and Cell 
Biology, 39(1), 63–68. https://doi.org/10.1089/dna.2019.4746 

Zhou, W., Nielsen, J. B., Fritsche, L. G., Dey, R., Gabrielsen, M. E., Wolford, B. N., 
LeFaive, J., VandeHaar, P., Gagliano, S. A., Gifford, A., Bastarache, L. A., Wei, 
W.-Q., Denny, J. C., Lin, M., Hveem, K., Kang, H. M., Abecasis, G. R., Willer, C. 
J., & Lee, S. (2018). Efficiently controlling for case-control imbalance and sample 
relatedness in large-scale genetic association studies. Nature Genetics, 50(9), 
1335–1341. https://doi.org/10.1038/s41588-018-0184-y 

Zhuang, X., Ye, R., So, M.-T., Lam, W.-Y., Karim, A., Yu, M., Ngo, N. D., Cherny, S. S., 
Tam, P. K.-H., Garcia-Barcelo, M.-M., Tang, C. S., & Sham, P. C. (2020). A 
random forest-based framework for genotyping and accuracy assessment of 
copy number variations. NAR Genomics and Bioinformatics, 2(3). 
https://doi.org/10.1093/nargab/lqaa071 

Zohar, A. H. (1999). The Epidemiology of Obsessive-Compulsive Disorder in Children 
and Adolescents. Child and Adolescent Psychiatric Clinics of North America, 
8(3), 445–460. https://doi.org/10.1016/s1056-4993(18)30163-9 

Zohar, J. (1987). Obsessive-Compulsive Disorders: Theory and Management. 
Psychosomatics, 28. 

Zuk, O., Hechter, E., Sunyaev, S. R., & Lander, E. S. (2012). The mystery of missing 
heritability: Genetic interactions create phantom heritability. Proceedings of the 
National Academy of Sciences, 109(4), 1193–1198. 
https://doi.org/10.1073/pnas.1119675109 

 

 



 

241 

BIOGRAPHICAL SKETCH 

Franjo Ivankovic was born in Mostar and raised in Donji Hamzići, Bosnia and 

Herzegovina. Following graduation from Elementary School Čerin, in 2009 they enrolled 

in the High Electrical Engineering School Ruđer Bošković in Mostar. In 2011, they 

transferred to the United World College in Mostar, from where they ultimately graduated 

in 2013. In 2013, Franjo moved to the United States of America where they matriculated 

to the University of Florida.  

They graduated from the University of Florida in 2017 with a Bachelor of Science 

in integrative biology and Bachelor of Arts in anthropology, earning a certificate in 

medical anthropology. They remained at the University of Florida to pursue Ph.D. 

program in genetics and genomics. Initially, Franjo spent time studying molecular and 

RNA biology of neuromuscular diseases under the mentorship of Dr. Maurice S. 

Swanson. However, to fully pursue their passion, Franjo transitioned into the 

Department of Psychiatry to pursue research in psychiatric genomics under the 

mentorship of Dr. Carol A. Mathews, focusing on psychiatric disorders of childhood, 

particularly Tourette syndrome and obsessive-compulsive disorder.  

In the laboratory of Dr. Mathews, Franjo worked on exploring and better 

understanding psychiatric phenotypes in childhood and adolescence, delineating 

genetic underpinnings of childhood psychiatric disorders, and deconvoluting complex 

phenotype-genotype relationships within and between neurodevelopmental psychiatric 

disorders.  

Franjo graduated in the summer semester of 2022. They continued their work on 

psychiatric genomics as a post-doctoral research fellow. 


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Statistical Genomics
	Microarray Genotyping
	Polymorphism Analysis
	Structural Variant Analysis

	Psychiatric Genomics

	PROGRESS IN GENOMICS OF NEURODEVELOPMENTAL DISORDERS
	Overview of the Traits
	Tic Disorders
	Obsessive-Compulsive Disorder

	Genomics of Neurodevelopmental Disorders
	Tic Disorders
	Obsessive-Compulsive Disorder


	COMPLEX RELATIONSHIP BETWEEN NEURODEVELOPMENTAL DISORDERS
	Clinical Perspective
	Genetic Perspective

	EXPLORATION OF OCRD PHENOTYPES IN ABCD STUDY
	Background
	Methods
	Diagnoses
	Prevalence Rates
	CBCL Variables
	Analysis of CBCL and Diagnoses
	Computational Resources

	Results
	There is an Over-endorsement of Psychiatric Disorders in the ABCD Study
	Narrow Definitions Reflect Reference Prevalence Rates Better
	Comorbidities Show Variability Between nOCD and bnOCD
	OCS is a Better Predictor of nOCD than OCP
	Association Between CBCL and OCD is Primarily Driven by Compulsions
	TD in the ABCD Study Follow Expected Prevalence Patterns
	CBCL Constructs Show TD-Dependent Stratification

	Discussion

	GENETIC ARCHITECTURE OF OCRD PHENOTYPES IN ABCD STUDY
	Background
	Methods
	Genotype Data
	Quality Control of Genotype Data
	Phasing and Imputation
	Global Ancestry
	Covariate PCA
	Genomic Relationship Matrix
	Phenotypes
	Case-Control Matching
	Association Testing
	Gene Annotation and Ontology Analysis
	Polygenic Risk Score Analysis
	Heritability and Genetic Correlations
	Admixture Analysis

	Results
	nOCD ccGWAS
	bnOCD ccGWAS
	OCS qGWAS
	Cross-OCRD Trait GWAS
	OCRD Trait PRS Analysis
	PGC PRS Analysis
	Within Sample Heritability and Genetic Correlations
	PGC Heritability and Genetic Correlations
	Admixture Analysis

	Discussion

	CNV ANALYSIS OF TOURETTE SYNDROME FAMILIES
	Background
	Methods
	Samples
	TD
	ASD and unaffected siblings

	Data Processing
	TAAICG
	SPARK

	Genetic Report formation
	PennCNV Calling
	Post-Calling QC
	Annotations
	Global Burden Analysis
	Incidence Rate Ratio
	Gene Tests

	Results
	Incidence Rate Ratios
	Burden Tests
	Gene Associations

	Discussion

	CONCLUSIONS AND FUTURE DIRECTIONS
	LIST OF REFERENCES
	BIOGRAPHICAL SKETCH

